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General introduction

Two public health challenges
By 2030, approximately 20% of the population will be aged 65 years or older.1 As 
a consequence, the prevalence of numerous diseases will increase dramatically. 
Prominent among these diseases is hypertension, a cardiovascular disease that 
currently a$ects over 1 billion adults worldwide.2 Hypertension already accounts 
for 9.4 million deaths yearly due to complications such as stroke, renal failure 
and myocardial infarction.2 Another disease with increasing incidence is Alzhei-
mer’s disease (AD), the most common type of dementia. An estimated 47 million 
people are a$ected by dementia, with 10 million new cases each year.3 Due to the 
changing population age structure, this number is expected to grow to 132 million 
in 2050.4

In this thesis, I set out to investigate the e$ects of the gut microbiota and 
its metabolites on these two public health care challenges: hypertension and Alz-
heimer’s disease. Both diseases have a complex etiology that is not completely 
understood and share lifestyle interventions to reduce their risk, although there is 
no certain way to prevent either. !is introduction will provide some background 
on the gut microbiota and the pathophysiology of hypertension and Alzheimer’s 
disease. It also includes a general explanation of three techniques used in this the-
sis: 16S rRNA sequencing of fecal samples, liquid chromatography - tandem mass 
spectrometry (LC-MS/MS) for identi"cation of plasma metabolites and machine 
learning analyses.

Gut microbiome: a rapidly evolving !eld
!e human body harbors around 38 trillion microbial cells, which is the same 
order of magnitude as the total number of human cells in our body.5 !e major-
ity of these microbes reside in our gastrointestinal tract, forming what is known 
as the gut microbiome. Composed primarily of bacteria and viruses, with small-
er contributions from archaea, fungi, and protists, the gut microbiome encom-
passes the collective genetic material of these microorganisms.6 Historically, the 
"eld depended on bacterial culturing techniques which were unable to culture a 
large proportion of microorganisms. However, advancements in DNA sequenc-
ing techniques over the past two decades have revolutionized our understanding 
of the gut microbiota’s role in health and disease.7,8 Rather than by culturing, gut 
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bacterial composition is now determined with either 16S rRNA sequencing or 
shotgun metagenomic sequencing of DNA in fecal samples (see box “Two tech-
niques to identify bacteria”). As a result, thousands of completely new microbial 
species were discovered, and the composition of the gut microbiota could be de-
scribed in much more detail, since whole genome information became available 
for a large number of microbes.9

Gut microbiota composition is predominantly shaped by environmental 
factors.10 While diet has by far the most impact on microbiota composition, age is 
another important determinant. !e largest changes in the gut microbiota com-
position take place in early childhood, from the "rst exposure to the mother’s 
microbiome during birth, to the exposure to (breast)milk and the introduction 
of the solid food.11,12 In adulthood, the microbiome changes slowly with advanc-
ing age due to a multitude of factors, including comorbidity, polypharmacy and 
changing lifestyle.13 Among medications, antibiotics have a particularly profound 
e$ect by wholesale killing of bacterial groups.14 Medication such as metformin, 
statins, proton pump inhibitors and antihypertensive medication have also been 
associated with microbiota alterations.15 However, it is di%cult to disentangle the 
impact of medication use from that of the underlying disease. 

!e gut microbiome has many functions that bene"t the human host. Gut 
microbes assist in the digestion of our food, by breaking down otherwise indi-
gestible dietary "bers.16 One of the main products of this fermentation process, 
short chain fatty acids (SCFA), are used by the cells in the colon (colonocytes) as 
a main energy source. In addition, the microbiome helps to regulate our immune 
system and to protect against other harmful bacteria. Microbiota also play a key 
role in the recycling of bile acids, and the production of a number of vitamins 
such as vitamin B and vitamin K.17–19 In the gut, these metabolites are absorbed 
into the systemic circulation. Other metabolites that are produced by gut bacteria 
include trimethylamine-N-oxide (TMAO) and phenylacetylglutamine (PAG).20,21 
Both these metabolites have been associated with higher cardiovascular risk.21,22 
Another key mechanism for the e$ects of the gut microbiota on human health is 
the enteric nervous system. !is large system of nerves is sometimes referred to as 
“our second brain”.23 !ere is bidirectional communication between the gut and 
brain through the vagal nerve, which might explain complaints of stomach aches 
in stressful situations.24

Changes in the structure of the gut microbiome have been observed in a 
variety of health conditions, including in&ammatory bowel disease and diabe-
tes.25,26 O#en, the microbiome alterations are "rst observed in humans with these 
conditions, or animal models show that disease outcomes might improve with 
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Two techniques to identify bacteria
To determine which gut bacteria can be found in the intestinal tract, we sequence 
the genetic material present in fecal samples. !ere are two commonly used se-
quencing techniques: 16S ribosomal RNA gene (rRNA) sequencing and shotgun 
metagenomic sequencing. 

16S rRNA sequencing has accelerated microbiota research since its "rst use in 
1996. !is technique uses the DNA that codes for the 16S subunit of the rRNA. !e 
16S rRNA gene is speci"c to bacteria and has both highly variable and well-con-
served regions. !at means that it is easy to "nd the gene using the region that is 
well-conserved (i.e., similar between bacteria), while we can also use this gene to 
distinguish bacteria using regions with high variability between species. !ese are 
the steps in the protocol of 16S sequencing:
• DNA isolation: DNA of the host and of micro-organisms in the gut is isolated 

from fecal samples.
• Ampli"cation of the 16S rRNA gene using polymerase chain reaction (PCR): 

primers (small pieces of DNA) are designed to match the ends of a region of 
the 16S gene. Next, the DNA is repeatedly copied using the DNA polymerase 
enzyme.  

• Sequencing: the ampli"ed DNA is sequenced using high-throughput sequen-
cing technologies. !e quality of the sequence data is checked and the primer 
sequences are removed from the data.

• Sequence alignment and clustering: the resulting sequences are compared to 
a database with reference sequences to identify which microbes we are likely 
looking at. !e next step is to pool similar sequences together into Amplicon 
Sequence Variants (ASVs) and to count the occurrences of these ASVs per 
sample.

• Taxonomic assignment: the ASV sequences are assigned taxonomic classi"ca-
tions (i.e., names of bacterial taxa) using a reference database.

In shotgun metagenomic sequencing, all microbial DNA in a fecal sample is 
used for sequencing, not only the 16S rRNA gene. Before sequencing, the DNA is 
fragmented in small pieces. Using bioinformatic tools, the sequences can then be 
assembled into longer bits, that can be compared to a database to determine the 
structure of the microbiome. Shotgun metagenomic sequencing is a relatively ex-



Chapter 110

pensive technique, that however is becoming increasingly cheaper over time. !e 
advantage of shotgun sequencing compared to 16S sequencing is the improved 
resolution up to strain level, and the possibility to further analyze the bacterial 
genomes. From these genomes, we can infer details on their functional pro"le, 
enabling pathway analysis. 

Figure 1: 16S amplicon sequencing

Schematic overview of the process of 16S amplicon sequencing from sample collection and process-
ing to the data analyses.
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microbiome interventions. !e next step towards determining causality is to use 
one of the available strategies to change the gut microbiota composition in hu-
mans, in order to improve health outcomes.27 One such strategy is to supplement 
certain bacteria with probiotics containing one or more bacterial strains.28 Alter-
natively, fecal microbiota transplantation (FMT) can be performed, a procedure 
in which feces from a healthy donor is transferred into the gastrointestinal tract of 
a patient with the condition of interest.29 FMT has been shown to be very e$ective 
in Clostridium di!cile infections, with success rates up to 90%.30 Other interven-
tions include prebiotics: indigestible dietary supplements such as dietary "bers 
that selectively stimulate the growth of bene"cial bacteria.31

Hypertension: a mosaic of causal factors
High blood pressure, or hypertension, is a health condition that has been recog-
nized for centuries, yet there is still much we do not completely understand about 
its pathophysiology.32,33 In its early stages, hypertension rarely causes symptoms, 
which can lead to many cases going undiagnosed.34 Even for those who are diag-
nosed, limited access to treatment and di%culty in managing blood pressure over 
time can be a signi"cant challenge, especially in low- and middle-income coun-
tries with weaker healthcare systems.2 Detecting hypertension early and provid-
ing proper treatment can have substantial health and economic bene"ts. Failure 
to do so can result in costly interventions to treat complications, such as cardiac 
bypass surgery, carotid artery surgery, and dialysis and subsequent need for kid-
ney transplantation, putting a strain on healthcare budgets.35

Blood pressure is regulated by an interplay between the sympathetic ner-
vous system, the renin-angiotensin-aldosterone system (RAAS), and the kid-
neys.36 !ese systems work together to maintain a balance between &uid volume 
and blood vessel tone, which in turn helps to regulate blood pressure. In hyper-
tension, however, this balance is disrupted, leading to a sustained higher setpoint 
of blood pressure. !is may be caused by a variety of factors, including increased 
peripheral vascular resistance, increased cardiac output, dysfunction of RAAS, or 
kidney failure.

!ere are many other factors at play in hypertension, including lifestyle, 
genetics and vascular in&ammation.37 Lifestyle factors such as a lack of physical 
activity, high body mass index (BMI), alcohol use, and a Western type diet are 
associated with higher blood pressure.38 Common genetic variants explain 3-4% 
of the variance in systolic and diastolic BP.39 Many of these genetic variants a$ect 
genes that are expressed in vascular tissue such as vascular smooth muscle and 
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endothelial cells, which form the inner lining of the vasculature.40 In a healthy 
state, endothelial cells produce nitric oxide, an agent that dilates the vessels by 
preventing contraction of vascular smooth muscle cells.41 !e lower peripheral re-
sistance results in lower blood pressure. In hypertension, there o#en is endothelial 
dysfunction, with lower nitric oxide production and more contraction.42 In addi-
tion, the endothelium shows more in&ammatory features. Vascular in&ammation 
can amplify the process of atherosclerosis and lead to vascular sti$ness.43,44 Sti$ 
vessels are less compliant, meaning they can absorb less of the pressure wave that 
travels through the arteries, which leads to a higher blood pressure. !e complex 
interplay of these contributing factors in the etiology of hypertension is some-
times referred to as the mosaic theory of hypertension (Figure 2).

However, it remains largely unknown why blood pressure levels, and the 
response to hypertension treatment, di$er between individuals. !is is a frustrat-
ing reality for patients, who have questions about the causes of hypertension and 
their response to lifestyle changes or antihypertensive medication. !ere are three 
windows of opportunity in hypertension that could provide new leads: the gut 
microbiota, plasma metabolome, and a focus on diversity.

Schematic overview of factors contributing to the pathophysiology of hypertension. 

Figure 2: Mosaic theory of hypertension
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Three windows of opportunity in hypertension
Animal studies in germ-free rats in the 1960s and 1970s were the "rst to suggest 
a connection between gut microbiota composition and blood pressure.45 Subse-
quent research, much later, demonstrated that the gut microbiota of hypertensive 
rats di$ers from that of control rats. Importantly, it was observed that adminis-
tering antibiotics to these hypertensive rats had blood pressure-lowering e$ects.46 
!e gut microbiota could establish its e$ects on blood pressure through the sym-
pathetic nervous system and the vagal nerve, or by producing or modifying me-
tabolites that are absorbed into the systemic circulation.47,48 !ese metabolites 
might a$ect endothelial function, interfere with RAAS or aggravate vascular in-
&ammation and sti$ness. Examples of gut metabolites that have been associated 
with cardiovascular health are short chain fatty acids (SCFA), lipopolysaccharide 
(LPS) and trimethylamine-N-oxide (TMAO).

!e plasma metabolome, which is a collection of small molecules that can 
be found in our circulation, might also provide new insights in the causes of hy-
pertension. In several chapters in this thesis, a method called liquid chromatog-
raphy – tandem mass spectrometry (LC-MS/MS; see box “Measuring metabolite 
pro!les”) was used to measure plasma metabolites. !is collection of metabo-
lites is essentially a "ngerprint of metabolic processes in the body. For instance, 
the plasma metabolome includes dietary products (e.g., ca$eine, or fructose) and 
medication (beta blockers). Sex might have the largest impact on this "ngerprint 
through a range of sex hormone metabolites, and as a result, sex can be easily 
inferred from plasma metabolite pro"les.49 !e gut microbiome also produces or 
modi"es a range of metabolites that are absorbed into our circulation, such as 
SCFA, TMAO or PAG.50 Other products that can be found in plasma are interme-
diates and products of vascular metabolism. Since vascular in&ammation is one 
of the factors contributing to hypertension, these might be metabolites that could 
teach us more about hypertension pathophysiology.

Another approach that could help us explain underlying mechanisms of 
hypertension is to focus on diversity. More attention for diversity in medicine in 
general and hypertension speci"cally is needed to close the gap in healthcare dis-
parities.51,52 !ree facets of the many faces of diversity are discussed in this thesis, 
namely diversity in age, sex, and ethnicity. It is well established that hypertension 
at old age is physiologically di$erent from hypertension at young age. While in 
young patients, genetic factors and lifestyle have more prominent e$ects, in older 
patients, vascular sti$ness and loss of kidney function are of greater importance. 
In addition, clear sex di$erences exist in life course trajectories of blood pres-
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sure.53 Men have higher blood pressure than women for most of their lives, yet in 
older age, this di$erence is reversed and hypertension is more common among 
women. In general, women have a higher risk of secondary complications with 
similar blood pressure levels. Lastly, the pathophysiology of hypertension might 
di$er depending on ancestry and its resulting genetic di$erences. For instance, 
African-Americans have been shown to have a higher salt-sensitivity.54 For several 
chapters in this thesis, we used data of the HEalthy Life in an Urban Setting (HE-
LIUS) study, a multi-ethnic population-based cohort study in Amsterdam with 
over 25,000 participants.55 Within this cohort, there is data on self-identi"ed eth-
nicity as opposed to ancestry. Ethnicity refers to a shared cultural identity among 
a group of people who share common traditions, beliefs, customs, and sometimes 
language or religion. Since the HELIUS study is a large cohort that is diverse in 
age, sex, and ethnicity, this was a suitable starting point to explore the associations 
between the gut microbiota, plasma metabolome and blood pressure.

Alzheimer’s disease: a dangerous pair of proteins
Alzheimer’s disease (AD) is named a#er Alois Alzheimer, a German psychiatrist 
and neuroanatomist, who "rst described “a peculiar severe disease process of the 
cerebral cortex” at a German psychiatry conference in 1906.56 He described the 
case of Auguste D., a 51-year-old woman, with rapidly progressive memory com-
plaints, sleep disorders, behavioral problems and confusion. Following Auguste 
D.’s death, Alzheimer conducted a postmortem examination of her brain, discov-
ering unusual histologic abnormalities. !ese abnormalities, now recognized as 
two characteristics of AD, involve the accumulation of abnormally folded amyloid 
beta in amyloid plaques, and accumulation of tau proteins in neuro"brillary tan-
gles. !is process is toxic for neurons and results in loss of neuronal tissue, also 
known as neurodegeneration.57 In addition, Alzheimer’s disease is associated with 
chronic neuroin&ammation, either as a consequence of the disease process or as 
an underlying causal factor.58  

!e brain pathology is re&ected by a set of biomarkers that we can mea-
sure, for example in cerebral spinal &uid (CSF), with positron emission tomogra-
phy (PET) scans, and with magnetic resonance imaging (MRI) brain scans. Low 
amyloid levels and increased pathological tau levels in CSF collected by lumbar 
puncture are indications of Alzheimer’s pathology.59 !e accumulation of these 
proteins can also be visualized using PET-scans. In addition, on MRI the neuro-
degeneration caused by AD can be recognized as global cortical atrophy (GCA), 
medial temporal atrophy (MTA) and parietal cortical atrophy (PCA).60,61 !ese 
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Measuring metabolite pro!les
LC-MS/MS is a technique that can be used for the identi"cation and quanti"cation 
of metabolites. As the name shows, it is a combination of two techniques: liquid 
chromatography (LC) and tandem mass spectrometry (MS/MS). LC is used for 
separation of metabolites, while MS is used for mass analysis. !e process of LC-
MS/MS could be set up as follows: 

1. Sample preparation: !e plasma sample is "rst extracted and puri"ed to 
remove unwanted proteins and other molecules that may interfere with the 
analysis.

2. Chromatographic separation: !e extracted metabolites are separated using 
liquid chromatography based on their properties, such as polarity and size.

3. Mass spectrometry (MS1): !e metabolites are ionized and then introduced 
into the mass spectrometer, which separates the ions based on their mass-
to-charge ratio (m/z). !e mass spectrometer generates a mass spectrum, 
which provides information on the molecular weight and structure of the 
metabolites.

4. Mass spectrometry (MS2): In tandem mass spectrometry (MS/MS), the 
ions generated in step 3 are further fragmented into smaller pieces. !is 
process allows for the identi"cation of the metabolites based on their speci"c 
fragmentation patterns ("ngerprints).

5. Data analysis: !e mass spectra and fragmentation patterns are analyzed 
using specialized so#ware to identify and quantify the metabolites in the 
sample by comparing the data to libraries of known metabolites.

In the absence of spiked-in standards with known concentrations, the metabolomics 
data generated through this process is semi-quantitative. !is implies that absolute 
concentrations of metabolites are not determined. !e method provides relative 
concentrations of the metabolites, allowing for comparison of concentrations 
between samples.
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are scored by radiologists on a 4- or 5-point scale, from normal to abnormal. 
Vascular damage is more pronounced in vascular dementia, yet also observed in 
Alzheimer’s disease. !is vascular damage shows on an MRI as white matter hy-
perintensities, small (lacunar) infarcts or cerebral microbleeds.62,63

Patients with AD usually present with cognitive signs and symptoms, 
including di%culty with memory, language, and spatial awareness, as well as 
changes in mood and behavior. A diagnosis of dementia can be made when these 
complaints lead to functional impairment in daily activities. When cognitive im-
pairment (mostly memory) occurs rather isolated, while daily functioning is large-
ly intact, this is referred to as mild cognitive impairment (MCI).64,65 Patients with 
cognitive complaints that do not show any abnormalities on neuropsychological 
testing are referred to as having subjective cognitive decline (SCD). In a minority 
of individuals with SCD, underlying Alzheimer’s pathology may be causing their 
memory complaints. In research settings, we can diagnose Alzheimer’s disease in-
dependent of the cognitive stage.59 When biomarkers in CSF are indicative of AD 
pathology, we call this Alzheimer’s disease, with stage of SCD, MCI or dementia.

Two potential biomarkers of AD are less established: changes in nutritional 
status and gut microbiota composition. Weight loss is one of the signs of a chang-
ing nutritional status that is observed very early in the disease process in patients 
with AD. Attention for nutritional status in these patients is important, since mal-
nutrition has been associated with higher mortality and progression of cognitive 
decline.66–69 In addition, mouse models suggest that the gut microbiota could af-
fect the progression of disease, by showing that fecal microbiota transplantation 
from healthy to diseased mice reduced the accumulation of amyloid beta.70 In 
this thesis, we explore the relation between AD biomarkers and nutritional status 
and the gut microbiota in a clinical cohort, the NUDAD project. For the chap-
ter in which we investigate the associations between gut microbiota composition 
and AD biomarkers, we used machine learning analyses. !ese machine learning 
models were applied for multiple projects with microbiome and metabolome data 
through this thesis (see box “A very short introduction to machine learning” for 
some background).
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A very short introduction to machine learning
In this thesis, there are several projects for which we used machine learning 
analyses. Machine learning is a type of arti"cial intelligence (AI) that allows 
computer systems to automatically learn and improve from experience. Machine 
learning algorithms can be trained on large datasets of input and output data, and 
they can use this training to make predictions or decisions about new, unseen data. 
!ese are four questions that could help in evaluating machine learning models:

• What is the algorithm used? !e algorithm that is used in this thesis is the 
XGBoost algorithm,71 which can either be used in a classi"cation prediction 
(Alzheimer’s disease: yes or no) or a regression prediction (blood pressure 
as continuous outcome). !is algorithm builds decision trees to predict the 
outcome.

• What is the design of the model? We used a nested cross-validation design. 
!at means that within the train set of data, there was another smaller loop of 
test and train data, in which the hyperparameters of the model were optimized 
before deciding what the optimal model set-up was. Hyperparameters are 
variables that de"ne the model set-up, such as the learning rate, the number 
of trees and the depth of the trees. !e resulting model with optimized 
hyperparameters was tested once on the test set of the outer test-train loop. 
!us, data points used to train a model are never used in testing that same 
model.

• What is the main model metric? In other words, on what parameter do we base 
our evaluation of the model. For instance, this could be explained variance for 
regression models, in which we try to predict a continuous outcome such as 
blood pressure. !e explained variance is the proportion of variance that we 
can explain using the machine learning model.

• Is there leakage of information from the test to the train data set? In some 
machine learning designs, a selection of the most promising features (in our 
case microbes, or metabolites) is made prior to using the machine learning 
model and splitting the data in a test and train set. !e main model metric 
could be much higher as a result: we can explain more variance because we 
"rst selected the features that looked promising based on the complete dataset.
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Outline of this thesis
!e overall aim of this thesis is to explore the associations between gut microbio-
ta, circulating metabolites and two diseases with a rising incidence: hypertension 
and Alzheimer’s disease. 

Part I of this thesis focuses on hypertension. Chapter 2 describes the associations 
between gut microbiota composition and blood pressure in a multi-ethnic popu-
lation cohort. Chapter 3 reports an overview of the existing literature on gut mi-
crobiota composition in hypertension and atherosclerosis: what are the missing 
links between gut microbiota and cardiovascular health? Next, we will zoom in 
on one of these mechanisms, the e$ect of butyrate on blood pressure. !e results 
of a randomized placebo-controlled trial with butyrate in patients with grade I 
hypertension will be discussed in Chapter 4. Since it is likely that there are more 
yet unknown mechanisms that connect the gut microbiota and blood pressure, 
we looked for novel associations between plasma metabolites and blood pressure 
in Chapter 5. !is project started with a machine learning analysis in a popula-
tion-based cohort and resulted in a series of in vitro experiments to assess the ef-
fects of one of the metabolites on endothelial cells. Chapter 6 revisits the machine 
learning analyses from the previous chapter through the lens of sex di$erences: 
how are plasma metabolites di$erently associated with blood pressure in women 
and men?

Part II of this thesis focuses on nutritional status and gut microbiota composition 
in Alzheimer’s disease. Chapter 7 describes the associations between MRI charac-
teristics and nutritional status in a memory clinic population, including patients 
with subjective cognitive decline, MCI and early-stage AD dementia. In Chapter 
8, we explore the associations between gut microbiota composition and the pres-
ence of AD biomarkers in the same cohort.
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Abstract
Background: Preliminary evidence from animal and human studies shows that gut 
microbiota composition and levels of microbiota-derived metabolites, including 
short chain fatty acids (SCFA), are associated with blood pressure (BP). We 
hypothesized that faecal microbiota composition and derived metabolites may be 
di$erently associated with BP across ethnic groups. 

Methods: We included 4672 subjects (mean age 49.8±11.7 years, 52% women) 
from 6 di$erent ethnic groups participating in the HELIUS study. !e gut 
microbiota was pro"led using 16S rRNA gene amplicon sequencing. Associations 
between microbiota composition and o%ce BP were assessed using machine 
learning prediction models. In the subgroups with the largest associations, faecal 
SCFA levels were compared in 200 subjects with lower or higher systolic BP. 

Results: Faecal microbiota composition explained 4.4% of the total systolic BP 
variance. Best predictors for systolic BP included Roseburia spp., Clostridium 
spp., Romboutsia spp., and Ruminococcaceae spp. Explained variance of the 
microbiota composition was highest in Dutch subjects (4.8%), but very low in 
African Surinamese, Ghanaians, and Turkish descent groups (explained variance 
<0.8%). Faecal SCFA levels, including acetate (p<0.05) and propionate (p<0.01), 
were lower in young Dutch participants with low systolic BP.

Conclusions: Faecal microbiota composition is associated with BP, but with stron-
gly divergent associations between ethnic groups. Intriguingly, while Dutch par-
ticipants with lower BP had higher abundances of several SCFA-producing mi-
crobes, they had lower faecal SCFA levels. Intervention studies with SCFAs could 
provide more insight in the e$ects of these metabolites on BP.
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Introduction
Hypertension is the leading modi"able risk factor for cardiovascular morbidity 
and mortality, and thereby the most important risk factor for preventable death 
worldwide. !e pathogenesis of essential hypertension remains incompletely un-
derstood, and is currently attributed to a complex interplay of genetic and cardio-
vascular risk factors.1 However, recent studies have shown that only 3-4% of the 
variance in systolic blood pressure (SBP) can be explained by common genetic 
risk variants.2 Lifestyle factors such as diet and obesity are known to be important 
for the pathogenesis of hypertension.3 Analysis of population data from the UK 
biobank revealed that lifestyle factors can modify blood pressure (BP) by up to 4-5 
mmHg depending on genetic risk.4

!e gut microbiota is a re&ection of both genetic make-up and life-long exposure 
to dietary risk factors, and could play a key role in mediating the development of 
essential hypertension.5 Key metabolites produced by gut microbiota are short 
chain fatty acids (SCFAs), which are end-products of intestinal fermentation of 
otherwise indigestible dietary "bres.6 Animal studies point towards a direct link 
between faecal SCFAs and BP, mediated by SCFAs receptors in kidneys and blood 
vessels.7 In humans, evidence of the relation between faecal SCFA levels and BP is 
scarce and con&icting. Both higher and lower faecal SCFAs have been associated 
with higher BP.8–10 Assuming that the gut microbiota and SCFAs are indeed asso-
ciated with BP, this would provide new perspectives on both the pathogenesis and 
treatment of hypertension.

Earlier studies have identi"ed important di$erences in both the prevalence, patho-
genesis and treatment responses of hypertension among ethnic groups.11–13 In ad-
dition, we found substantial di$erences in gut microbiota composition between 
ethnic groups within the population-based HELIUS cohort that were only partly 
explained by sociodemographic, lifestyle, or dietary in&uences.14 !erefore, eth-
nic di$erences should be taken into account when studying associations between 
the gut microbiota composition and BP. Hence, in this cross-sectional study, we 
aim to investigate associations between the gut microbiota, faecal SCFA levels, 
and BP across di$erent ethnic groups using data from the HELIUS cohort study. 
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Methods

Study population 
We used cross-sectional data obtained during baseline visits between 2011 and 
2015 of the ongoing HEalthy Life in an Urban Setting (HELIUS) prospective co-
hort study. !e aims and design of this study have been described previously.14 
In brief, based on the municipality registry of Amsterdam, people aged between 
18-70 were randomly sampled, strati"ed by ethnicity (Dutch, South-Asian Suri-
namese, African-Surinamese, Ghanaian, Turkish or Moroccan). For the present 
analysis, we included participants with available BP measurements, BMI, and fae-
cal samples. All participants provided written informed consent and the study was 
approved by the medical ethical review board of the Amsterdam UMC, location 
AMC. !is study followed the principles of the Declaration of Helsinki.

Data were collected during morning study visits at local research sites. Pri-
or to these visits, all participants were asked to refrain from using any vasoactive 
medication and smoking. BMI was calculated from height and weight. BP was 
measured a#er at least 5 minutes of rest in the supine position, using the average 
of two consecutive measurements obtained with a validated semi-automatic os-
cillometric device (Microlife WatchBP Home; Microlife AG, Switzerland). Fasting 
glucose and creatinine levels were measured in venous blood samples, and esti-
mated glomerular "ltration rate (eGFR) was calculated using the CKD-EPI for-
mula. In addition, urinary albumin-to-creatinine ratio was determined from early 
morning spot urine samples. Albuminuria was de"ned as a ratio ≥30 mg/mmol.15 

Graphical abstract
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Participants were asked to bring all current medication, from which current use 
of BP-lowering and glucose-lowering medication was determined. Diabetes was 
de"ned based on elevated fasting glucose levels (≥7 mmol/L) or the use of glu-
cose-lowering medication. Hypertension was de"ned according to guidelines as 
an elevated SBP >140 mmHg or diastolic BP (DBP) >90 mmHg or self-reported 
use of BP-lowering medication.15

Gut microbiota composition
Participants received faecal collection tubes either prior or during the study visit. 
!ey were asked to bring a fresh faecal sample within 6 hours a#er collection, or, 
if not possible, to store the sample overnight in a freezer. Samples were stored at 
−20°C at the study visit location for a maximum of 1 day before transportation 
to the central freezer (-80°C). Samples obtained from participants who either had 
diarrhoea in the week prior to collection or used antibiotics within three weeks 
prior to collection were excluded. Samples were shipped to the Wallenberg Labo-
ratory (Sahlgrenska Academy at University of Gothenburg, Sweden) for sequenc-
ing. DNA was extracted from 150 mg aliquot of faecal samples using a repeated 
bead-beating protocol.16 Faecal microbiota composition was determined by se-
quencing the V4 region of the 16S rRNA gene on an Illumina MiSeq (llumina 
RTA v1.17.28; MCS v2.5, San Diego, CA, USA) using 515F and 806R primers 
designed for dual-indexing17 and the V2 Illumina kit (2x250 bp paired-end reads). 
PCR was performed in duplicate reactions as previously described.14 Preprocess-
ing of the raw sequencing data, as described in Supplement 1 resulted in a dataset 
containing 4672 samples. 

Faecal SCFA measurements
Faecal SCFA levels were measured using high performance liquid chromatogra-
phy (HPLC) with UV detection according to the method of De Baere et al.18 In 
addition, for all samples, dry weights were determined a#er freeze-drying a ho-
mogenized faecal aliquot for 24 hours. All concentrations resulting from HPLC 
measurements were corrected for the di$erence in the wet and dry weight per 
sample.

Statistical analysis
We used machine learning models to assess the association between gut microbi-
ota composition and BP. Analyses were performed for the total study population 
and for subgroups strati"ed by age (≤ 50 years, >50 years), sex, and ethnicity. A 



2

31Associations between gut microbiota and BP

separate set of models was performed using adjusted SBP and DBP values. Ad-
justments were made by determining the residuals a#er "tting a linear regression 
model for each of the subgroups with SBP/DBP as the dependent variable and age, 
sex, and BMI as independent variables. For age, we used sex-speci"c restricted 
cubic splines, of which the order was chosen based on the Akaike Information 
Criterion. Machine learning models were built aiming to predict SBP, corrected 
SBP, DBP, and corrected DBP from the gut microbiota composition (i.e. from the 
relative abundance of microbial 16s rRNA amplicon sequence variants; ASVs). 
Gradient boosted tree models were used in a nested-cross validation structure 
to prevent over"tting and ensure robustness of results (Supplement 2). Models 
were built using an iterative &ow. In each iteration, the dataset was randomly split 
into a test set containing 20% of the participants and a training set containing the 
remaining 80%. !erea#er, 5-fold cross-validation was performed strictly within 
the train set in order to "t and optimize the model hyperparameters. !e result-
ing model was "nally evaluated on the test set. Two random variables were added 
to the predictor data during each iteration to serve as a benchmark. Explained 

variance was determined as the proportion of variance of the outcome  (SBP or 
DBP) explained by the model-predicted values ŷ (predicted SBP or DBP), using: 
Explained variance and the ranked list of predictor importance were recorded for 
each iteration and were averaged across 100 iterations. If the explained variance 
was negative, we concluded that the model did not have any predictive power.

Spearman rank correlation coe%cients were calculated between the top 10 
best SBP-predicting ASVs found by the machine learning models and both SBP 
and DBP. Furthermore, participants were categorized into tertiles of the relative 
abundance of each of the ASVs. E$ect sizes for the e$ect of each ASV on SBP were 
estimated for every tertile using linear regression in a crude model correcting only 
for age and sex, and in a full model with additional correction for BMI, smoking, 
use of antihypertensive medication, and history of diabetes.

For the analyses of faecal SCFAs, we used a subgroup of 200 participants 
selected from Dutch participants aged ≤50 years, as the explained variance was 
highest in the Dutch and the young subgroups. Based on age-speci"c percentiles 
(<30 years, 30-40, 40-50 years), 50 men and 50 women with the highest SBP were 
selected. Using sex, age and BMI, these 100 participants were matched to 100 oth-
er participants from the lowest 35th percentile of SBP. Faecal SCFA concentrations 
and abundance of the top predicting ASV’s were compared between the high and 
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low BP group using Mann-Whitney U-tests. In addition, the relation with micro-
biota composition was examined using a correlation matrix of SCFA concentra-
tion, BP, and the top 10 predicting ASVs.

Machine learning was implemented in Python (v.3.7.4) using the XGBoost 
(v.0.90), numpy (v.1.16.4), pandas (v.0.25.1), and scikit-learn (v.0.21.2) packages. 
Statistical analyses were performed using R (v.3.6.2), using the Regression Mod-
eling Strategies (rms, v.5.1-4) and Nonparametric Preprocessing for Parametric 
Causal Interference (MatchIt v.3.0.2) packages. Figures were created using R with 
the corrplot package (v.0.84), and Graphpad (v.8.3.0).

Data availability
!e 16S rRNA gene amplicon raw sequence data and associated metadata have 
been deposited at the European Genome-phenome Archive under study number 
EGAD00001004106. !e HELIUS data are owned by the Amsterdam UMC, loca-
tion AMC in Amsterdam, !e Netherlands. Any researcher can request the data 
by submitting a proposal as outlined at http://www.heliusstudy.nl/.

Results

Population characteristics
Characteristics of the included 4672 participants are shown in Table 1. Younger 
participants (≤50 years) had a lower prevalence of hypertension (24.2%) com-
pared to older participants (57.1%), and a lower use of antihypertensive medica-
tion (8.8% vs 33.4%). Dutch and Moroccan groups were younger and contained 
more men than other groups. South Asian Surinamese, African Surinamese, and 
Ghanaian groups had higher BP and higher proportions of participants with hy-
pertension than other ethnic groups. BMI was lowest in Dutch (25.5±4.4 kg/m2) 
and in the South Asian Surinamese groups (26.6±4.5 kg/m2). Diabetes prevalence 
was highest in South Asian Surinamese participants (23.9%) and lowest in Dutch 
participants (4.8%).

Microbiota composition and BP
!e BP variance that was explained by gut microbiota composition is shown in 
Table 2, strati"ed for the di$erent subgroups. In the total population, the ex-
plained variance of BP levels by microbiota composition was 4.4% for SBP and

http://www.heliusstudy.nl/
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Overall Younger 
(≤50) Older (>50) Female Male

n 4672 2217 2455 2429 2243

Female 2429 (52.0) 1220 (55.0) 1209 (49.2) - -

Age (years) 49.8±11.7 39.9±8.3 58.8±5.2 49.2±11.7 50.5±11.6

SBP (mmHg) 129.9±18.2 123.7±16.0 135.4±18.1 127.2±18.5 132.7±17.3

DBP (mmHg) 81.1±10.6 79.1±10.5 83.0±10.4 78.6±10.4 83.9±10.2

BMI (kg/m2) 27.2±4.9 26.7±5.0 27.7±4.8 27.8±5.4 26.6±4.2

eGFR (ml/
min/1.73m2) 97.1±17.0 105.6±14.8 89.3±15.0 98.7±17.2 95.3±16.5

Hypertension 1937 (41.5) 536 (24.2) 1401 (57.1) 924 (38.0) 1013 (45.2)

Antihypertensive 
drugs 1016 (21.7) 196 (8.8) 820 (33.4) 559 (23.0) 457 (20.4)

Lipid lowering 
drugs 580 (12.4) 86 (3.9) 494 (20.1) 240 (9.9) 340 (15.2)

Albuminuria 196 (4.2) 67 (3.0) 129 (5.3) 91 (3.8) 105 (4.7)

Diabetes 507 (10.9) 96 (4.3) 411 (16.8) 218 (9.0) 289 (12.9)

Antidiabetic 
drugs 367 (7.9) 61 (2.8) 306 (12.5) 178 (7.3) 189 (8.4)

Smoking 941 (20.1) 456 (20.6) 485 (19.8) 349 (14.4) 592 (26.4)

Dutch SAS Afr Sur Ghanaian Turkish Moroccan

n 1328 575 1128 462 436 605

Female 633 (47.7) 300 (52.2) 672 (59.6) 255 (55.2) 224 (51.4) 281 (46.4)

Age (years) 51.43±12.7 51.6±11.2 51.9±10.5 48.2±9.0 44.2±11.0 45.5±11.4

SBP (mmHg) 127.6±17.2 132.4±19.6 132.9±17.9 137.2±18.2 124.1±16.2 125.3±17.6

DBP (mmHg) 79.5±10.2 81.6±10.4 83.4±10.4 85.8±11.0 79.5±10.3 77.6±9.8

BMI (kg/m2) 25.5±4.4 26.6±4.5 28.2±5.4 28.2±4.5 28.9±4.8 27.9±4.7

eGFR (ml/
min/1.73m2) 91.2±14.9 91.8±16.8 99.1±18.3 100.4±17.7 104.6±13.4 104.5±14.1

Hypertension 455 (34.3) 280 (48.7) 598 (53.0) 272 (58.9) 127 (29.1) 146 (24.1)

Table 1: Population characteristics
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Antihypertensive 
drugs 210 (15.8) 174 (30.3) 353 (31.3) 136 (29.4) 64 (14.7) 49 (8.1)

Lipid lowering 
drugs 135 (10.2) 160 (27.8) 130 (11.5) 40 (8.7) 53 (12.2) 44 (7.3)

Albuminuria 26 (2.0) 45 (7.8) 42 (3.7) 27 (5.9) 19 (4.4) 28 (4.6)

Diabetes 63 (4.8) 137 (23.9) 143 (12.7) 47 (10.2) 39 (9.0) 64 (10.6)

Antidiabetic 
drugs 25 (1.9) 116 (20.2) 104 (9.2) 35 (7.6) 30 (6.9) 45 (7.4)

Smoking 263 (19.8) 139 (24.2) 300 (26.6) 17 (3.7) 117 (26.8) 74 (12.2)

Data is presented as mean±SD or n (%). SBP = systolic blood pressure; DBP = diastolic blood pressure, 
BMI = body mass index, eGFR = estimated glomerular $ltration rate (CKD-EPI), SAS = South Asian 
Surinamese, Afr Sur = African Surinamese.

4.3% for DBP. Explained variance was higher in younger subjects (5.3% for both 
SBP and DBP) than in older subjects (2.5% for SBP; 1.4% for DBP), and higher in 
women (3.9% for  SBP, 2.2% for DBP) than in men (1.8% for SBP; 0.3% for DBP). 
!ere was a clear di$erence between Dutch (4.8% for SBP, 0.4% for DBP) and 
other ethnic groups (range 0-0.8% for SBP, 0.48% for DBP). !e correlations be-
tween alpha diversity of gut microbiota and BP (Supplement 3) showed the same 
pattern as the explained variance with stronger correlations in young, female and 
Dutch subgroups.

In the total study population, the best predicting ASVs were Roseburia spp., 
Clostridium sensu stricto spp., Roseburia hominis, Romboutsia spp., Streptococcus 
spp., and Ruminococcaceae NK4A214 spp. (Supplement 4). !e abundance of the 
best predicting ASVs was negatively associated with both SBP and DBP, except for 
Streptococcus spp. and Klebsiella spp., as shown in Figure 1. In addition, the cor-
relation plot showed signi"cant collinearity between the best predicting ASVs. In 
the regression analyses, the e$ect of these ASVs on BP ranged between -6 mmHg 
and 2 mmHg (Figure 2, Supplement 5), with increasing e$ect sizes for higher 
abundance in most of the ASVs. Roseburia spp. was both the best predictor from 
the machine learning model and had the largest absolute e$ect on BP: the middle 
and highest tertile were associated with a lower SBP of respectively 2.3 (95%CI 
1.2–3.5) and 6.0 mmHg (95%CI 4.9–7.1). !e e$ect of the ASV abundance on 
BP was attenuated when adjusting for confounders, including use of medication, 
but remained signi"cant for most predictors, ranging between -4 and 2 mmHg. 
In this model, we found for the second tertile of Roseburia spp., a 1.9 (95%CI 0.8–
3.0) lower SBP, while participants in the upper tertile had a 4.1 (95%CI 3.0–5.1) 
mmHg lower SBP.
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Table 2: Explained variance of BP by microbiota composition for di!erent 
subgroups

Microbiota composition (explained variance in %)

Group SBP Res SBP DBP Res DBP

All subjects 4.44 2.22 4.30 2.05

Younger (≤50) 5.31 3.11 5.34 2.81

Older (>50) 2.51 1.75 1.40 0.87

Men 1.82 1.41 0.32 1.41

Women 3.89 1.90 2.23 1.30

Dutch 4.76 0.60 0.40 n.a.

SA Surinamese n.a. 0.64 n.a. 0.09

Afr Surinamese n.a. 0.74 n.a. 0.08

Ghanaian n.a. 0 n.a. n.a.

Moroccan 0.77 0.42 n.a. 0.64

Turkish n.a. n.a. 0.48 0.62

Explained variance in % of the gut microbiome composition for blood pressure. SA Surinamese = South 
Asian Surinamese; Afr Surinamese = African Surinamese; SBP = systolic blood pressure; DBP = di-
astolic blood pressure; res = residuals adjusted for age, sex, BMI. N.a. = explained variance in these 
models was negative.

Faecal SCFA levels and BP
Matching of Dutch subjects on age, sex and BMI resulted in 100 subjects with low 
SBP and 100 subjects with high SBP (Supplement 6). Consistent with the data 
from the full cohort, subjects with low BP had higher abundance of Roseburia spp. 
(p=0.0047), Roseburia hominis (p=0.047) and Ruminococcaceae spp. (p=0.045). 
Di$erences of faecal SCFA levels are shown in Figure 3. Low SBP subjects had 
signi"cantly lower faecal levels of acetate (p=0.022) and propionate (p=0.006), 
and there was a trend of lower butyrate levels (p=0.077). In addition, faecal SCFA 
levels were negatively correlated with the top 10 ASVs, and positively with SBP 
and DBP (Supplement 7).
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Correlation plot for top 10 predictors of systolic blood pressure from gut microbiota composition. Only 
signi$cant (p<0.05) Spearman correlation coe!cients between the relative abundance of each of the 
microbes, systolic (SBP) and diastolic (DBP) blood pressure are shown. Colours indicate direction and 
strength of each correlation.

Figure 1: Correlations of top predictors for systolic blood pressure
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-8 -6 -4 -2 0 2 4

Escherichia/Shigella spp. 53

Enterorhabdus spp. 150

Ruminococcaceae NK4A214 group spp. 89

Klebsiella spp. 114

Ruminococcaceae NK4A214 group spp. 161

Streptococcus spp. 128

Romboutsia spp. 47

Roseburia hominis 131

Clostridium sensu stricto 1 spp. 87

Roseburia spp. 132

Crude model

Δ Systolic blood pressure
-8 -6 -4 -2 0 2 4

Full model

Δ Systolic blood pressure

Middle (tertile 2) High (tertile 3)

Linear regression coe!cients with 95%-con$dence intervals per tertile of ASV counts for top 10 pre-
dictors of systolic blood pressure (SBP) from gut microbiota composition, with the lowest tertile as 
reference. Le" side: crude model (correcting for age and sex); right side: additional correction for BMI, 
smoking, use of antihypertensive medication and history of diabetes.

Figure 2: Linear regression models
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Discussion
Our main "nding is that gut microbiota composition is associated with BP and 
that the explained BP variance was widely divergent between ethnic groups. As-
sociations between the gut microbiota and BP remained essentially unchanged 
a#er correcting for possible confounders, including BMI. Remarkably, while SC-
FA-producing microbes were associated with lower BP, increased faecal SCFA 
levels were associated with higher BP. In line with this "nding, SCFA-producing 
microbes were negatively correlated with faecal SCFA levels. !e current study 
extends previous "ndings in cohort studies by evaluating the association between 
gut microbiota composition and BP in a large multi-ethnic cohort using machine 
learning prediction models.19,20
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Low systolic BP
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Comparison of short chain fatty acid (SCFA) levels between high versus low blood pressure (BP) sub-
groups (boxes: median with interquartile range; bars: minimum and maximum). Di%erences tested 
with Mann-Whitney U tests. 

Figure 3: Faecal SCFA levels
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We found that, in the complete cohort, machine learning models based on gut 
microbiota composition explained 4.2% and 4.3% of the variance in SBP and DBP. 
Regression models showed that in the top tertiles of microbiota predictors SBP 
was 4 to 6 mmHg lower compared to the lowest tertile. !is is a similar e$ect 
size compared to the e$ect of genetic or lifestyle risk factors on SBP in the UK 
biobank.4 Based on recent meta-analyses of randomised controlled trials, this cor-
responds to an overall cardiovascular risk reduction of 8-12%.21 A#er correction 
for BMI, explained variance of SBP and DBP was attenuated to 2.2% and 2.1%. In 
line with these "ndings, in the regression analyses the e$ects were attenuated to-
wards a di$erence of 2 to 4 mmHg a#er correction for BMI and other covariates, 
suggesting that the e$ect is only partly driven by BMI. 

In the analysis of the top predictors, the "nding that SCFA-producing mi-
crobes are associated with lower BP is in line with two studies of microbiota com-
position and hypertension that found lower abundances of either Ruminococca-
ceae spp. or Roseburia spp. in subjects with higher BP.10,20 Moreover, comparable 
to our results, higher abundances of Klebsiella spp. and Streptococcaceae spp. have 
been previously associated with higher BP.10,22

Previous analyses of HELIUS and other cohorts have shown signi"cant 
ethnic di$erences in gut microbiota composition.14,23 We add that there are sub-
stantial di$erences in the association of gut microbiota and BP between ethnici-
ties, sexes and ages, as we observed the highest explained variance in the young, 
female and Dutch subgroups. In addition to di$erences in microbiota composi-
tion, this could relate to age, sex and ethnic speci"c e$ects in the underlying aeti-
ology of hypertension. At younger age, lifestyle and genetic factors are important 
determinants, while at older age SBP increases and DBP decreases as a conse-
quence of arterial sti$ness.24 In addition, multiple studies have shown that older 
individuals and individuals of African descent are more salt-sensitive, suggesting 
that they have a more volume-dependent hypertension phenotype.25 Earlier "nd-
ings from animal models pointed towards a relation between the gut microbiota 
and salt-sensitive BP driven by abundance of Lactobacillus spp.26 In contrast, we 
observed a lower explained variance in older, Ghanaian, and African Surinamese 
subjects, and Lactobacillus spp. was not among the top predictors in these models 
nor in the model with all subjects. We therefore could not con"rm the association 
between gut microbiota composition and salt-sensitivity in susceptible popula-
tions.

Faecal SCFA levels were higher in subjects with higher BP, which is in line with 
previous results from other cohort studies that examined the relation between 
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faecal SCFAs and BP.8,9 !ese positive associations between BP and faecal SCFA 
levels in our cohort seem to con&ict with the negative associations found between 
BP and SCFA-producing microbes. However, faecal SCFA levels are not a direct 
measure of intestinal SCFA production but rather a net result of SCFA production 
a#er subtracting SCFA absorption.27 We found consistent correlations in the sub-
group with faecal SCFA levels in which SCFA-producing bacteria were both neg-
atively correlated with BP and with faecal SCFA levels. !erefore, we hypothesize 
that higher microbial SCFA production upregulates intestinal SCFA absorption 
resulting in relatively lower levels of SCFAs excretion in faeces.28

!e observed di$erences in SCFA levels between subjects with high and 
low BP and the multiple SCFA-producing microbes provide further evidence 
for the hypothesis that SCFAs have a role in BP regulation. Animal studies have 
shown that SCFAs can have disparate e$ects on BP depending on the receptors in-
volved. Free fatty acid receptors (FFAR) are G-protein coupled receptors that can 
be found in a variety of tissues, including the kidney and renal artery, and causes 
arterial vasodilation in response to propionate, acetate and butyrate.7 In contrast, 
a BP elevating e$ect is mediated by the SCFA receptor Olfr78 in mice through 
renin release from granules in the renal juxtaglomerular apparatus.29 !e human 
analogue of this olfactory receptor is OR51E2, which responds to propionate and 
acetate, but not butyrate.7 It has been suggested that Olfr78 and OR51E2 serve 
as a negative feedback loop for the BP lowering e$ects of the FFARs, speci"cally 
FFAR3.29 Future intervention studies with oral SCFAs could further unravel the 
cross-talk between the di$erent SCFA and BP regulation in humans.

To our knowledge, this is the "rst study to assess the relation between gut micro-
biota composition and BP across di$erent ethnic groups. We used a large popu-
lation-based sample with standardized BP measurements for our analysis. Faecal 
samples were obtained using a standardized protocol from participants without 
diarrhoea and prior antibiotics use, and analysed using 16S rRNA sequencing, 
which is a widely used and reproducible method to determine microbiota compo-
sition.30 For the main analysis, we used machine learning prediction models with 
nested cross-validation, which enabled us to simultaneously include the complete 
processed sequencing results in the models while minimizing the risk of over"t-
ting. We corrected for BMI using residuals a#er "tting a regression model, which 
could lead to an additional random error in the corrected values. However, both 
correction for covariates in the regression analyses and the correlations between 
alpha diversity and BP yielded similar results. While the machine learning results 
could be hampered by the use of BP-lowering drugs or glucose-lowering medica-
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tion, e$ects remained signi"cant a#er correction in the regression model. In the 
analyses of SCFA levels, we matched the low and high BP groups for age, sex and 
BMI. However, signi"cant di$erences in BMI remained a#er matching, that could 
have a$ected our results. Lastly, the cross-sectional design of this study compli-
cates causal interpretation of the observed associations. In that regard, we expect 
that prospective data from the HELIUS cohort study will enable us to assess the 
longitudinal relation between gut microbiota composition and the development 
of hypertension. If a longitudinal relation can be con"rmed such that changes in 
microbiota are found to precede and be proportional to changes in BP, poten-
tial therapeutic strategies that could be considered include supplementation of 
(a combination of) speci"c bacterial strains, modulating gut metabolites such as 
SCFAs, faecal microbiota transplantation or antibiotic treatment.

In conclusion, we found a consistent association between gut microbiota compo-
sition and BP, with large di$erences in explained variance between age and eth-
nic subgroups. Future studies should take ethnic di$erences into account when 
studying the gut microbiota in relation to BP. !e observed associations between 
SCFA-producing microbes and BP provide further evidence for the hypothesis 
that SCFAs play a role in BP regulation. Intervention studies with SCFAs could 
provide more insight in the underlying mechanism of these metabolites on BP.
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Supplements

Supplement 1: Bioinformatic pipeline
Raw sequencing reads were processed using USEARCH (v. 11.0.667).1 Paired-end 
reads were merged allowing a maximum of 30 di$erences in the overlapping region 
and a maximum of 1 expected error in the merged contig. Expected error-based 
read quality "ltering was performed as described in Edgar et al.2 Remaining con-
tigs were dereplicated and unique sequences were denoised using the UNOISE3 
algorithm to infer Amplicon Sequence Variants (ASVs).2 All merged reads were 
subsequently mapped against the resulting ASVs to produce a count table. ASVs 
not matching expected amplicon length were removed (i.e. ASV sequences longer 
than 260 bp or shorter than 250 bp). Taxonomy was assigned with the ‘assignTax-
onomy’ function from the ‘DADA2’ R package (v. 1.12.1) using the SILVA (v. 132) 
reference database.3,4 ASVs sequences were then aligned using MAFFT (v. 7.427) 
using the auto settings.5 A phylogenetic tree was constructed from the resulting 
multiple sequence alignment with FastTree (v. 2.1.11 Double Precision) using a 
generalized time-reversible model.6 !e ASV table, taxonomy, and tree were in-
tegrated using the ‘phyloseq’ R package (v. 1.28.0). !e ASV table was rare"ed to 
14932 counts per sample.7 Of 6056 sequenced samples, 24 had insu%cient counts 
(<5000 counts per sample) and were excluded at the rarefying stage. 

1. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. 
Bioinformatics (2010) doi:10.1093/bioinformatics/btq461.

2. Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS 
amplicon sequencing. bioRxiv (2016) doi:10.1101/081257.

3. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina 
amplicon data. Nat. Methods (2016) doi:10.1038/nmeth.3869.

4. Quast, C. et al. !e SILVA ribosomal RNA gene database project: Improved data 
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7: Improvements in performance and usability. Mol. Biol. Evol. (2013) doi:10.1093/
molbev/mst010.

6. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 - Approximately maximum-
likelihood trees for large alignments. PLoS ONE (2010) doi:10.1371/journal.
pone.0009490.

7. McMurdie, P. J. & Holmes, S. Phyloseq: An R Package for Reproducible Interactive 
Analysis and Graphics of Microbiome Census Data. PLoS ONE (2013) doi:10.1371/
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Supplement 2: Design of machine learning model

Data set

Randomly split data set
into training test and test

Test set
(20%)

Training set
(80%)

5-fold Cross-Validation (CV)

Training CV subset
(80% of training set)

Validation CV subset
(20% of training set)

Tune model (XGboost)

5 iterations

Model with hyper-parameters
optimized by Cross-Validation

Cross-Validation optimized model
Tested on test set

Never used in training or tuning the model

100 iterations

Ranked feature importance
+

Explained variance

Schematic overview of the models used for determining the association between the gut microbiota 
composition and blood pressure.
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Supplement 3: Correlations Shannon index and blood pressure

Alpha diversity
Group SBP (ρ) p-value DBP (ρ) p-value

All subjects -0.10 <0.001 -0.10 <0.001

Younger (≤50) -0.12 <0.001 -0.12 <0.001

Older (>50) -0.12 <0.001 -0.11 <0.001

Men -0.05 0.03 -0.07 0.033

Women -0.13 <0.001 -0.11 <0.001

Dutch -0.08 <0.001 -0.05 0.005

SA Surinamese -0.07 0.10 -0.07 0.101

Afr Surinamese -0.08 0.01 -0.06 0.006

Ghanaian 0.00 0.99 0.05 0.990

Morrocan -0.08 0.06 -0.10 0.059

Turkish -0.07 0.16 -0.08 0.164

Spearman correlation coe!cients with corresponding p-values for the alpha diversity and both systolic 
and diastolic blood pressure. SA Surinamese = South Asian Surinamese; Afr Surinamese = African 
Surinamese; SBP = systolic blood pressure; DBP = diastolic blood pressure.
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Supplement 5: Linear regression coe#cients ASVs and blood 
pressure

All subjects   Crude model Full model

ASV Tertile Coe$cient lower upper Coe$cient lower upper

Roseburia spp.
2 -2.33 -3.50 -1.16 -1.92 -3.03 -0.82

3 -5.99 -7.11 -4.86 -4.10 -5.19 -3.01

Clostridium sensu stricto 1 spp. 
2 -1.88 -3.06 -0.71 -0.70 -1.81 0.42

3 -3.92 -5.08 -2.76 -2.64 -3.76 -1.52

Roseburia hominis
2 -3.48 -4.66 -2.30 -2.73 -3.84 -1.62

3 -3.52 -4.66 -2.39 -2.63 -3.71 -1.56

Romboutsia spp.
2 -2.32 -3.50 -1.15 -1.36 -2.49 -0.23

3 -2.23 -3.42 -1.04 -1.50 -2.64 -0.36

Streptococcus spp.
2 0.54 -0.63 1.70 0.52 -0.58 1.61

3 3.02 1.87 4.18 1.51 0.42 2.60

Ruminococcaceae NK4A214 group 
spp.

2 -1.64 -3.59 0.30 -1.26 -3.09 0.57

3 -4.91 -5.94 -3.87 -3.32 -4.31 -2.33

Klebsiella spp.
2 -0.41 -2.12 1.31 -0.75 -2.36 0.86

3 1.57 0.46 2.69 0.77 -0.28 1.82

Ruminococcaceae NK4A214 group 
spp.

2 -2.33 -3.51 -1.16 -1.97 -3.07 -0.86

3 -3.26 -4.42 -2.09 -2.94 -4.04 -1.85

Enterorhabdus spp.
2 1.27 0.02 2.52 0.55 -0.63 1.73

3 -4.15 -5.25 -3.05 -3.15 -4.18 -2.11

Escherichia/Shigella spp.
2 0.42 -0.78 1.63 0.12 -1.01 1.25

3 0.62 -0.51 1.75 -0.03 -1.10 1.04

Linear regression coe!cients per tertile of microbe counts for top 10 predictors of systolic blood pressure 
(SBP) from gut microbiota composition. Crude model: corrected for age and sex, full model: additional 
correction for  BMI, smoking, use of antihypertensive medication and history of diabetes. ASV = am-
plicon sequencing variants.
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Supplement 6: Population characteristics matched subjects
Low SBP High SBP p

n 100 100
Female 50 50 1.000
Age (years) 37.0±8.2 38.8±8.8 0.140
SBP (mmHg) 109.6±6.5 139.7±10.9 <0.001
DBP (mmHg) 71.6±6.4 87.4±8.6 <0.001
BMI (kg/m2) 24.0±2.6 27.4±5.2 <0.001
Hypertension 4 (4.0) 57 (57.0) <0.001
Antihypertensive drugs 4 (4.0) 12 (12.0) 0.068
Lipid lowering drugs 1 (1.0) 4 (4.0) 0.365
eGFR (ml/min/1.73m2) 102.0 (12.7) 98.7 (14.1) 0.090
Albuminuria 2 (2.0) 4 (4.0) 0.678
Diabetes 1 (1.0) 2 (2.0) 1.000
Antidiabetic drugs 0 (0.0) 0 (0.0) 1.000
Smoking 22 (22.0) 22 (22.0) 1.000

Data is presented as mean±SD, n (%) or median [interquartile range]. Di%erences were tested with 
t-tests for continuous variables and chi-square tests for categorical variables. SBP = systolic blood pres-
sure; DBP = diastolic blood pressure, BMI = body mass index.
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Supplement 7: Correlation plot ASVs, faecal SCFA and blood 
pressure

Correlation plot for top 10 predictors of systolic blood pressure from gut microbiota composition in the 
subgroup of n=200 where fecal short chain fatty acid (SCFA) levels were determined. Only signi$cant 
(p<0.05) Spearman correlation coe!cients between the relative abundance of each of the microbes, 
systolic (SBP) and diastolic blood pressure (DBP) and levels of fecal SCFAs are shown. Colors indicate 
direction and strength of each correlation.
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Abstract
Gut microbiota and its metabolites such as short chain fatty acids (SCFA), 
lipopolysaccharides (LPS) and trimethylamine-N-oxide (TMAO) impact 
cardiovascular health. In this review, we discuss how gut microbiota and gut 
metabolites can a$ect hypertension and atherosclerosis. Hypertensive patients 
were shown to have lower alpha diversity, lower abundance of SCFA-producing 
microbiota and higher abundance of gram-negative bacteria, which are a source 
of LPS. Animal studies point towards a direct role for SCFAs in blood pressure 
regulation and show that LPS has pro-in&ammatory e$ects. Translocation of LPS 
into the systemic circulation is a consequence of increased gut permeability. In 
atherosclerosis, a multifactorial disease, the pathways of gut microbiota e$ects 
are diverse. Many studies have focused on the pro-atherogenic role of TMAO, 
however, it is not clear if this is a causal factor. In addition, gut microbiota play 
a key role in bile acid metabolism and some interventions targeting bile acid 
receptors tend to decrease atherosclerosis. Concluding, gut microbiota a$ect 
hypertension and atherosclerosis through many pathways, providing a wide range 
of potential therapeutic targets. Challenges ahead include translation of "ndings 
and mechanisms to humans and development of therapeutic interventions that 
target cardiovascular risk by modulation of gut microbes and metabolites.
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Introduction
Cardiovascular diseases, including atherosclerosis and hypertension, are public 
health care priorities of the World Health Organisation (WHO).1 Cardiovascular 
disease is the leading cause of mortality, representing a third of global deaths, and 
disproportionally a$ects low- and middle- income countries.2 Despite current 
preventive and therapeutic strategies, mortality due to cardiovascular disease is 
expected to further increase over the next decade.2 Accumulating evidence des-
cribes the role of gut microbiota in cardiovascular disease, potentially providing 
novel therapeutic targets. !e gut microbiome consists of more than 100 trillion 
micro-organisms, predominantly bacteria and viruses.3 Due to the development 
of 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing, 
the understanding of the role of the gut microbiota in health and disease has in-
creased tremendously over the past decade.4 Gut microbiota composition is lar-
gely determined by exposure to dietary factors, but conversely, gut microbiota 
are needed for digestion of macronutrients and production of a wide range of 
metabolites.5 Alterations in gut microbiota composition have been observed in 
a variety of health conditions, including type 2 diabetes, in&ammatory bowel 
disease, asthma, psychiatric disorders, but also in cardiovascular disease.6–10 In 
addition, several gut metabolites have been shown to interact with metabolism 
and the nervous system, a$ecting insulin sensitivity, energy balance and appetite 
regulation.11–13

Low-grade chronic in&ammation contributes to the development of both 
atherosclerosis and hypertension.14–17 Gut microbiota can induce systemic in-
&ammation, as has been shown in patients with type 2 diabetes.18 In addition, gut 
microbiota could a$ect cardiovascular risk indirectly, through metabolites such 
as short chain fatty acids (SCFA) and trimethylamine N-oxide (TMAO). !e re-
lation between gut microbiota and its key metabolites in hypertension and ather-
osclerosis could improve our understanding of di$erences in susceptibility for 
cardiovascular disease and provide potential therapeutic targets. In this narrative 
review, we will focus on the role of gut microbiota in hypertension and atheroscle-
rosis. A#er summarizing the current evidence, we will discuss future perspectives 
in this "eld.
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Gut microbiota in hypertension

Gut microbiota composition in hypertension
Hypertension is the most important modi"able risk factor for cardiovascular di-
sease.19 Although hypertension is thought to be driven by a combination of gene-
tic and lifestyle factors, genome-wide association studies showed that only a small 
(<5%) proportion of the incidence of hypertension can be explained by genetics.20 
In contrast, lifestyle tends to have a much larger in&uence, with separate life style 
factors such as body mass index (BMI) and salt intake a$ecting blood pressure 
levels with 5 mmHg.21 Several dietary interventions, including diets such as the 
Mediterranean diet and the DASH (Dietary Approaches to Stop Hypertension) 
diet have illustrated that higher intake of fruits, vegetables and "bers are associa-
ted with lower blood pressure.22(p19),23 !e Mediterranean diet has been shown to 
induce a rise in SCFAs, key metabolites produced by the gut microbiome.24

Several animal studies have reported compositional di$erences in the gut mi-
crobiota of animal models for hypertension, including Dahl-sensitive rats, sponta-
neous hypertensive rats, angiotensin-II induced hypertensive rats and deoxycor-
ticosterone acetate (DOCA)-salt mice, when compared to wild-type animals.25–28 
!ese di$erences include a lower abundance of SCFA-producing bacteria, higher 
abundance of lactate-producing bacteria,27 lower abundance of Bacteroidetes and 
higher abundance of Proteobacteria and Cyanobacteria,28 compared to control 
animals. Intervention studies in animals showed that blood pressure levels in the-
se animal models for hypertension can be modi"ed by fecal microbiota trans-
plants and antibiotic treatment.27

In humans, several cross-sectional studies have assessed associations bet-
ween gut microbiota composition and blood pressure or hypertension (Table 
1).27,29–37 Despite di$erences in sequencing methods and downstream analyses, 
some results regarding microbial alpha diversity and microbiota composition 
are consistent across studies. Higher blood pressure was associated with lower 
gut microbiota alpha diversity in almost all studies.27,30,32,34–37 Low alpha diversity 
is considered an adverse but nonspeci"c characteristic, since a decrease in di-
versity has also been observed in obesity, hyperinsulinemia and dyslipidemia. In 
addition, higher abundances of gram-negative microbiota including Klebsiella, 
Parabacteroides, Desulfovibrio, and Prevotella were associated with higher blood 
pressure. Gram-negative bacteria are a source of lipopolysaccharides (LPS), also 
known as endotoxins, that are pro-in&ammatory. In contrast, SCFA-producing 
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bacteria, including Ruminococcaceae, Roseburia and Faecalibacterium spp. were 
less abundant in hypertensive compared to normotensive patients.29,31,34,35,37 Of 
note, the majority of these studies did not adjust for important confounders such 
as age, BMI, or dietary factors in their analyses.

Dietary salt intake a$ects both the incidence of hypertension as well as gut 
microbiota composition. Higher salt intake has been associated with a shi# in mi-
crobiota composition in several animal models, including an increase in Lachnos-
piraceae, Ruminococcus and Parasutterella spp. and decrease in Lactobacillus and 
Oscillibacter.38–40 Lactobacillus abundance has been associated with salt sensitivity 
in hypertension, since supplementation of Lactobacillus spp. in a mice model has 
been shown to attenuate salt-sensitive hypertension, presumably by modulation 
of !17-cells.40 !e blood pressure lowering e$ect of Lactobacillus was con"rmed 
by several other animal models.41–44 In humans, however, a decrease of Lactoba-
cillus spp. was only reported by one of the cross-sectional studies in hypertensive 
subjects in Table 1.29 A meta-analysis including nine randomized-controlled tri-
als, predominantly with healthy controls, found a blood pressure lowering e$ect 
of probiotics with several Lactobacillus spp.43 !e blood pressure lowering e$ect 
tended to be stronger in the only included placebo-controlled intervention study 
with hypertensive subjects (17/13), although this study did not assess changes in 
gut microbiota composition.45

In summary, animal studies suggest a causal link between gut microbiota 
composition and blood pressure regulation. Cross-sectional studies in human 
subjects show speci"c di$erences in microbiota composition between hyperten-
sive subjects and controls, including lower SCFA-producing bacteria and higher 
gram-negative species. !ese di$erences point to a role for SCFAs and LPS in 
hypertension, although the direction of this association is unclear.

Short chain fatty acids
SCFAs, including acetate, propionate and butyrate, are produced by speci"c gut 
microbes by fermentation of otherwise indigestible dietary "bers.46 Fecal and 
plasma levels of SCFA are associated with the abundance of SCFA-producing 
microbiota in the gut and the intake of dietary "bers.36,47,48 Butyrate-producing 
microbiota include bacteria from the families Ruminococcaceae and Lachnospi-
raceae, but also bacteria such as Anaerobutyricum hallii and Anaerostipes spp. 
Acetate and propionate are mainly produced by Bi$dobacterium spp. and mu-
cin-degrading bacteria such as Akkermansia muciniphila.49 Most of the produced 
acetate and propionate is absorbed by the gut, while butyrate is used as a primary 
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energy source by colonocytes and only absorbed in very small proportions.50,51 As 
a result, plasma concentrations of acetate and propionate are much higher than 
circulating butyrate levels.

Human studies on the role of SCFAs in blood pressure regulation are rather 
scarce. Intriguingly, fecal SCFA concentrations in humans have been associated 
with higher blood pressure,30 while SCFA-producing microbiota are o#en associ-
ated with lower blood pressure.31,35,37 Perhaps, increased SCFA availability in the 
intestines results in upregulation of absorption mechanisms, which could lead to 
relatively lower fecal concentrations and higher plasma availability, as was sup-
ported by a murine model.52 !ere are no results from human intervention studies 
with SCFAs to target blood pressure. However, butyrate tended to lower blood 
pressure in intervention trials in subjects with metabolic syndrome.53,54 Moreover, 
the Mediterranean diet, which induces a rise in SCFA levels, has been reported to 
have a blood pressure lowering e$ect.24

In animal models, SCFAs were associated with both higher and lower blood 
pressure, which might be explained by the di$erential e$ects of SCFA recep-
tors.55 Several SCFA receptors have been identi"ed, including fatty acid receptor 
(FFAR)-2 and FFAR3 (formerly known as GPR43 and GPR41).56 Animal studies 
have shown that SCFAs can have di$erential e$ects on blood pressure depending 
on the receptors involved. FFAR2 is expressed in a variety of tissues, including 
renal arteries, and causes vasodilation in response to SCFAs. In contrast, a blood 
pressure elevating e$ect is mediated by Olfr78 in mice through renin release 
from granules in the renal juxtaglomerular apparatus.57,58 !e potency of SCFAs 
is much lower for Olfr78 and the human analogue, OR51E2, than for FFAR2, and 
therefore, it was suggested that Olfr78 serves as a negative feedback loop for the 
blood pressure lowering e$ects of FFAR2.59

In addition, SCFAs, in particular butyrate, have anti-in&ammatory e$ects that 
are primarily mediated by inhibition of histone deacetylase (HDAC).60,61 Butyrate 
suppresses the production of pro-in&ammatory cytokines, such as tumor-necro-
sis factor-α (TNFα), interleukin-12 (IL-12) and interferon-γ (IFN-γ), and upre-
gulates the production of anti-in&ammatory interleukin-10 (IL-10) by monocytes 
in vitro.62 In addition, SCFAs have anti-in&ammatory e$ects on epithelial cells 
that are partly mediated through HDAC.63 In spontaneously hypertensive rats, 
HDAC activation has been associated with hypertension.64 Conversely, butyrate 
administration to mice resulted in decreased blood pressure levels and reduced 
renal in&ammation by HDAC inhibition.65 

SCFAs have also been suggested to be implicated in gut-brain communication. 
Vagal a$erents express receptors that can sense SCFAs, which provides another 
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pathway for the blood pressure modulating e$ects of SCFAs.66 Animal studies 
showed that higher colonic levels of acetate could result in blood pressure lowe-
ring through parasympathetic activation. In addition, the blood pressure lowering 
e$ects of butyrate in rats were shown to be signi"cantly reduced by vagotomy.67 
Another study with spontaneous hypertensive rats described a reduced central 
responsiveness to butyrate, as a result from reduced expression of butyrate re-
ceptors in the hypothalamus.52 !us, SCFAs could a$ect blood pressure through 
direct vascular and renal receptors, through HDAC inhibition, but also through 
colonic nerve signaling.

Gut permeability and lipopolysaccharides
Gut microbiota can also a$ect gut permeability and therefore in&uence the extent 
to which metabolites and endotoxins are absorbed (Figure 1). !e barrier of the 
intestinal epithelium consists primarily of enterocyte brush borders and is more 
permeable for hydrophobic than for water soluble compounds. However, intercel-
lular junctions on the enterocyte’s lateral margins provide an alternative paracel-
lular absorption route.68 !ese intercellular junctions are dynamic structures that 
regulate paracellular permeability, and consist of tight junctions on the luminal 
side and adherens junctions on the laminal side. !e level of permeability can be 
in&uenced by dietary factors, but also by the zonulin pathway. Zonulin is secreted 
by the basal lamina of the intestinal epithelium and binds enterocytes to initiate a 
complex intracellular signaling pathway that eventually phosphorylates the tight 
junction, resulting in permeability of the paracellular route.69 Gut microbiota such 
as Vibrio cholerae appear to exploit this physiological pathway by excreting zona 
occludens toxin, a zonulin homologue that has similar e$ects.70

Animal models suggest that gut permeability is higher in the hypertensive 
state. Hypertensive rats had lower levels of mRNA of gap junction proteins, in-
dicating higher gut permeability, which was restored a#er fecal microbiota trans-
plantation from controls.71 In a similar model, an increase in blood pressure in 
spontaneous hypertensive rats was associated with more permeability and lower 
levels of tight junction proteins.72

A consequence of higher gut permeability is increased translocation of certain 
metabolites and endotoxins in the portal and systemic circulation, which could 
cause further ampli"cation of gut permeability.73 Lipopolysaccharides (LPS), also 
known as endotoxins, can be found in the outer membrane of gram-negative bac-
teria, the most abundant bacteria in the gut microbiome.74 !e lipid A component 
of LPS is the main pathogen-associated molecular pattern (PAMP) that can inter-



3

61Gut microbiota in hypertension and atherosclerosis: a review

act with Toll-like receptor 4 (TLR4).75,76 When translocated from the gut into the 
circulation, LPS forms a complex with LPS-binding protein (LBP) which can bind 
to CD14 on mononuclear cells.77 !is could lead to production of pro-in&amma-
tory cytokines, such as TNF-α, interleukin-1 (IL-1) and interleukin-6 (IL-6), me-
diated by the MD2/TLR4 receptor complex.76,78 Butyrate was shown to attenuate 
the pro-in&ammatory e$ects of LPS-stimulation.79

LPS is known to induce systemic in&ammation and has been shown to have 
both metabolic and cardiovascular e$ects. In mice, infusion of LPS to 2 to 3 fold 
higher plasma levels resulted in higher glucose and insulin levels and weight gain 
comparable to mice on a 4-week high-fat diet.73 LPS-administration to rats in-
creased heart rate and norepinephrine levels, decreased barore&ex sensitivity, 
and increased neuroin&ammation, as indicated by increased TLR and TNF-alfa 
expression in the paraventricular nucleus (PVN) that plays a key role in blood 
pressure regulation.80 !e same e$ects were observed in a small (n=8) group of 
human subjects that showed a signi"cant decrease in systolic and diastolic blood 
pressure a#er administration of LPS. Moreover, in this study, LPS increased brain 
microglial activation on positron emission tomography (PET)-scans.81 Summa-

Intestinal epitheliumDietary factors

Gut microbiota

Systemic circulation

LPS
Zona 

occludens 
toxin

Paracellular 
permeability Zonulin

Figure 1: Gut permeability

Gut microbiota, gut permeability and lipopolysaccharides (LPS) absorption. Paracellular permeability 
of the intestinal epithelium is a%ected by zonulin production of the basal lamina, dietary factors and gut 
microbiota that produce zone occludens toxin. Increased permeability leads to more LPS translocation 
to the systemic circulation, which has a pro-in&ammatory e%ect and further increases gut permeability.
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rizing, there is a limited number of studies suggesting that systemic LPS could 
have pro-in&ammatory, sympathetic activating and neuroin&ammatory e$ects, 
all of which are relevant in hypertension pathogenesis.

Gut-brain interactions
Increased sympathetic activation is considered one of the causal factors in the 
development of hypertension, and can already be observed in early stages.82 !e 
sympathetic nervous system modulates blood pressure levels through vasocon-
striction in peripheral blood vessels, renal regulation of water and sodium balance 
and release of renin by juxtaglomerular cells.83 Regions in the central nervous 
system that are involved in sympathetic activation include the PVN, the nucleus 
of the solitary tract (NTS) and the rostral ventrolateral medulla (RVLM).84 Hy-
pertension is associated with neuroin&ammation in these regions, which might 
be mediated by the renin-angiotensin aldosterone system, since prorenin was 
shown to cause microglial activation in mice and spontaneously hypertensive rats 
(SHR).85,86

Gut-brain communication could stimulate sympathetic activation and 
therefore play a role in the hypertension pathogenesis. !e gut is innervated by 
the autonomic nervous system that signals physiological conditions such as acid-
ity, osmolarity and pain.87 Intrinsically, the enteric nervous system (ENS), con-
sisting of the myenteric plexus and the submucosal plexus, controls intestinal 
motor and sensory functions.88 !e ENS is a complex system that is sometimes 
referred to as the ‘second brain’, because of the structural and functional similar-
ities.89 It communicates with the brain via the vagal nerve, which projects to the 
NTS, that is involved in sympathetic regulation. Gut microbiota interfere in ENS-
brain interactions by stimulating enterochroma%n cells to produce serotonin, 
a neurotransmitter that a$ects gut secretion, motility and local nerve re&exes.90 
Conversely, central sympathetic activation can through a cascade of events lead 
to increased gut permeability and increased translocation of metabolites into the 
systemic circulation.91

Elevated sympathetic drive shi#s bone marrow hemopoietic stem cells to 
a pro-in&ammatory state, and the release of these immune cells contributes to 
further hypertension development.72,92 An animal study with SHR showed that 
microbiota a$ect in&ammation in brain regions crucial to sympathetic out&ow. 
Microbiota composition in these rats was associated with reactive oxygen spe-
cies (ROS) and proin&ammatory cytokines in the PVN.71 In addition, fecal trans-
plantation in rat models from Wistar Kyoto (WKY) rats to SHR led to higher 
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sympathetic activity, independent of renin levels.71,93 Taken together, this suggests 
that gut microbiota can stimulate sympathetic drive, possibly by direct ENS-brain 
interactions or by promoting neuroin&ammation. !is increased sympathetic ac-
tivity can contribute to hypertension development directly or indirectly, by stim-
ulating low-grade systemic in&ammation.

Gut microbiota in atherosclerosis

Atherosclerosis and gut microbiota
Atherosclerosis is a multifactorial process, with lipid metabolism, in&ammation, 
vascular ageing and blood pressure as key players. Atherosclerosis is closely re-
lated to arterial sti$ness, which is caused by a loss of elastic "bers and thickening 
of arteriole walls. Arterial sti$ness tends to increase with age and results in a less 
compliant arterial system and higher pulse wave velocity. !e resulting increased 
shear stress has an aggravating e$ect on the formation of subsequent atheroscle-
rotic plaques.94,95 In this process, cholesterol accumulation in vessel walls leads 
to transformation of macrophages to foam cells a#er phagocytic uptake of lipid 
particles. Oxidation of lipids results in cholesterol crystallization, in&ammasome 
activation and production of proin&ammatory cytokines such as TNFα and IL-1β. 
Statins have been proven e$ective in preventing atherosclerotic events, not only by 
lowering low-density lipoprotein (LDL) cholesterol, but also through anti-in&am-
matory e$ects.96 !e Canakinumab Anti-In&ammatory !rombosis Outcomes 
Study (CANTOS)-trial underlined the role of in&ammation in atherosclerosis by 
demonstrating that treatment with canakinumab, a monoclonal inhibitor of IL-
1β, lowers the incidence of cardiovascular events.97

An atherosclerotic plaque was shown to be a microbial environment on 
itself, containing microbes such as Streptococcus, Pseudomonas, Klebsiella, Veil-
lonella spp., and Chlamydia pneumoniae.98–100 Most studies could not relate plaque 
microbiota composition to outcomes such as plaque vulnerability, rupture or 
cardiovascular events.101,102 It was suggested that pathogenic bacteria originating 
from oral or gut microbiomes make vessel walls more prone to plaque formation, 
either by direct infection of the vessel wall or by distant infections eliciting an 
auto-immune in&ammatory reaction through molecular mimicry.103,104 Interven-
tions with antibiotic treatment as secondary prevention, targeted at eliminating 
plaque microbiota did not result in lower incidence of cardiovascular events.105,106 
!erefore, these studies did not provide evidence for direct vessel wall infection 
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as a causal factor, although some argue that not all microbes were targeted by the 
antibiotics used and that interventions were too short.104,107

In humans, cross-sectional studies showed that higher abundance of the 
Collinsella genus, Enterobacteriaceae, Streptococcaceae and Klebsiella spp., and 
lower abundance of SCFA-producing bacteria Eubacterium, Roseburia and Ru-
minococcaceae spp. in the gut microbiota of patients with symptomatic athero-
sclerosis compared to healthy controls.108–110 Pulse wave velocity, a marker of ar-
terial sti$ness, was associated with a lower alpha diversity and lower number of 
SCFA-producing bacteria such as Ruminococcaceae spp. in middle aged women 
in the TwinUK cohort.111 Hence, the compositional di$erences in atherosclerosis 
overlap with "ndings in hypertensive patients, which is not surprising consid-
ering the shared risk factors and pathogenesis. Causal evidence of gut microbi-
ota composition in atherosclerosis is based on fecal microbiota transplantation 
(FMT) in animal studies. For example, mice transplanted with a more pro-in&am-
matory gut microbiota composition from Caspase1-/- mice had 29% larger plaque 
sizes than controls.112 Alternatively, gut microbiota could have indirect proath-
erogenic e$ects, by production of pro-atherogenic metabolites. !ese metabolites 
could also very well include the metabolites that are described for hypertension, 
including SCFAs. For the scope of this review, we chose to focus on the role of 
trimethylaminoxide (TMAO) and bile acids in atherosclerosis.

Trimethylamine-N-oxide
!e role of trimethylamine (TMA) and TMAO in the development of athero-
sclerosis is an extensively researched topic. !e role of gut microbiota in TMAO 
production is illustrated by Figure 2. TMA is produced by gut microbes, primar-
ily those from the families Clostridia and Enterobacteriaceae, in the degradation 
of nutrients such as carnitine, choline and lecithin, that can be found in dietary 
products including meat and eggs.113 A#er absorption, TMA is oxidized into 
TMAO by the hepatic enzyme &avin mono-oxygenase (FMO)-3.114 Plasma lev-
els of TMAO have both a high within-individual and inter-individual variability, 
which hampers comparison of studies.115 In addition, TMAO levels are higher in 
women, presumably due to di$erent expression of the converting enzyme FMO3 
and higher excretion rates in men.114 TMAO is primarily excreted by the kidneys 
through both glomerular "ltration and tubular secretion, which is a reason for 
increasing TMAO levels with decreasing renal function.116

Several mechanisms for the role of TMAO in atherosclerosis have been 
proposed, including the e$ects TMAO has on in&ammation, cholesterol metab-
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olism and thrombosis. TMAO was shown to increase the production of pro-in-
&ammatory cytokines such as TNF-α and IL-1β, and decrease anti-in&ammatory 
cytokines such as IL-10.117 In addition, the hepatic enzyme FMO3 appeared to 
have a regulating function in lipid metabolism. FMO3 knockdown in mice on a 
high cholesterol diet lowered intestinal lipid absorption and hepatic cholesterol 
production and stimulated reverse cholesterol transport, thereby restoring cho-
lesterol balance.118 Lastly, TMAO was reported to induce platelet hyperreactivity, 
which can facilitate thrombosis thus causing atherosclerotic thrombotic events.119

Administration of TMAO indeed promoted atherosclerosis in several mouse 
models.120,121 However, there are also several animal studies that could not con-
"rm this association, or even found a protective e$ect of TMAO.122–125 In humans, 
higher levels of TMAO have been associated with cardiovascular disease incidence 
in several prospective studies.123,126,127 Two meta-analyses concluded that elevated 
TMAO levels were associated with a higher risk of cardiovascular events and a 
higher all-cause mortality with relative risks ranging between 55% and 62%.122,128

Nevertheless, a causal e$ect of TMAO on atherosclerosis has not yet been 
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Production of trimethylamine-N-oxide (TMAO). Gut microbiota enzymes, including trimethylamine 
(TMA) lyase, convert dietary L-carnitine, choline, and lecithin into TMA. #e hepatic enzyme &avin 
mono-oxygenase 3 (FMO3) converts TMA into TMAO, and TMAO is primarily excreted by the kid-
neys.

 
Figure 2: Trimethylamine-N-oxide metabolism
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proven. An elegant way to assess causality is Mendelian randomization, using ge-
netic variants known to modify the exposure to examine the e$ect on disease.129 
In this case, the prevalence of cardiovascular disease in individuals with single 
nucleotide polymorphisms (SNPs) known to cause higher levels of TMAO was 
compared to individuals without these SNPs.130 Interestingly, in this study, athero-
sclerotic cardiovascular disease was not more prevalent in the group with genet-
ically predicted higher TMAO levels. Another way to prove causality is to lower 
TMAO levels with interventions, such as with TMA lyases that lower TMAO by 
degrading TMA before oxidization.131 However, results of human intervention 
studies have not yet been published.

Bile acids
Bile acid metabolism is dependent on microbial modi"cations in the gut (Fig-
ure 3) and this interaction was previously shown to a$ect in&ammatory bowel 
disease and hyperinsulinemia.132,133 Primary bile acids are synthesized by the liv-
er, which converts hydrophobic cholesterol to hydrophilic primary bile acids.134 
!ese bile acids are excreted by the gall bladder and reabsorbed in the terminal 
ileum by sodium-dependent bile acid transporters.135 Bile acids a$ect gut micro-
biota composition and inhibit microbial growth in the small intestines.136 A small 
proportion of bile acids reaches the colon, where microbiota convert primary bile 
acids to secondary bile acids by several modi"cations, including deconjugation, 
7α-dehydroxylation and 7α-hydrogenation.137 Secondary bile acids are hydropho-
bic and therefore easily absorbed by colonocytes and taken up into the systemic 
circulation. Only an estimated proportion of 5% of bile acids escape the entero-
hepatic cycle and are excreted.138 Bile acids also a$ect diverse metabolic pathways 
through Takeda G-protein coupled receptor 5 (TGR5) and the nuclear farnesoid 
X receptor (FXR), both of which have a preference for secondary bile acids. !e 
composition of the microbiota and the microbial community’s enzymatic reper-
toire determine the secondary bile acid pro"le.139 !e impact of gut microbiota 
on the bile acid pool was illustrated by a study showing that germ-free mice had 
a 71% decreased bile acid pool compared to controls.140 Interestingly, the bile acid 
metabolism interacts with the TMAO pathway, as FXR has been shown to regu-
late FMO3, the hepatic enzyme that converts TMA in TMAO.114

TGR5 is expressed in a variety of tissues, including liver, gall bladder, in-
testines, kidneys, pancreas, muscle and adipose tissue, but can also be found on 
leukocytes, macrophages and endothelial cells.141 A TGR5 agonist (INT-777) was 
shown to have immunosuppressive e$ects, including reduced pro-in&ammatory 



3

67Gut microbiota in hypertension and atherosclerosis: a review

cytokine production by macrophages and attenuation of atherosclerotic plaque 
formation in LDLr-/- mice.142,143 Translation of "ndings from animal studies on 
TGR5 to humans in other contexts has not always been successful. Despite ben-
e"cial metabolic e$ects of TGR5 agonists in mice, including lower glucose levels 
and improved lipid pro"les, the TGR5 agonist SB-756050 increased fasting glu-
cose levels compared to placebo in human subjects with type 2 diabetes.144 TGR5 
agonists had limited adverse e$ects in this trial, which is surprising considering 
the number of tissues that express this receptor. In animal models, TGR5 agonists 
have been associated with increased gastrointestinal motility, a potential higher 
incidence of biliary stones, lower vascular tone and blood pressure, and itching.145

Atherogenic mice models with FXR knock-out showed con&icting "ndings, with 
both increased and decreased atherosclerosis.146–148 However, administration of 
synthetic FXR agonists to atherogenic mice prevented plaque formation in three 
studies, presumably by lipid-lowering and anti-in&ammatory e$ects.149–151 Al-
though the FXR agonist obeticholic acid (OCA) lowered hepatic fat in human 
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Figure 3: Enterohepatic cycle of bile acids

Enterohepatic cycle of bile acids. Hepatic conversion of cholesterol results in primary bile acids, that 
are excreted postprandially by the gallbladder. Active reuptake takes place in the terminal ileum. In the 
colon, primary bile acids are converted to secondary bile acids by gut microbiota, and passively reab-
sorbed. Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5) have a preference 
for secondary bile acids.
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subjects with non-alcoholic steatohepatitis (NASH), it had paradoxical e$ects on 
cholesterol levels, increasing LDL and decreasing high-density lipoprotein (HDL) 
cholesterol.152

Dual agents that target both TGR5 and FXR might have more therapeu-
tic potential. Animal studies on the e$ect of dual agonists reported bene"cial 
e$ects on metabolic syndrome, NASH, cholangiopathy, progression of diabetic 
nephropathy, and atherosclerosis.153–157 In a mouse model for atherosclerosis, dual 
targeting with INT-767 seemed to be more e$ective in attenuating atherosclerosis 
than separate e$ects on TGR5 and FXR.153 All in all, although "ndings in animal 
studies are promising, it remains to be seen whether these results can be translated 
to humans, especially considering the substantial di$erences in atherosclerosis 
pathogenesis and bile acid metabolism between men and mice.

Therapeutic strategies
!e changes in gut microbiota composition and gut metabolites discussed in this 
review could all be potential therapeutic targets in the treatment of atherosclerosis 
and hypertension. !e most direct ways of altering gut microbiota composition 
are oral supplementation of speci"c microbial strains and fecal microbiota trans-
plantation (FMT). 

Probiotics containing SCFA-producing microbes including Bi$dobacteri-
um, Enterococcus and Lactobacillus were suggested to have a variety of health ben-
e"ts including anti-in&ammatory and bene"cial metabolic e$ects.158 In addition, 
oral treatment with speci"c Bi$dobacterium,  Lactobacillus and SCFA-producing 
Anaerobutyricum soehngenii species had modest blood pressure lowering e$ects 
in humans.43,159 However, our understanding of mechanisms is based on animal 
research. Evidence in humans is limited and inconclusive due to heterogeneity 
in investigational products and study designs.160 !erefore, the e$ect of speci"c 
strains is o#en unclear, which is one of the reasons that probiotics are marketed as 
nutritional supplements rather than medication.160

Probiotic e%cacy is both disease-speci"c and strain-speci"c,161  underlining 
the need for well-designed trials that survey gut microbiota composition before 
and a#er the intervention. Preferably, this should be measured with metagenomic 
sequencing (as opposed to 16S rRNA sequencing) in order to provide species-lev-
el resolution to compositional data. Another advantage of this technique is the 
potential to assess di$erences in gut microbiota functionality, as di$erences in 
microbiota composition do not always match di$erences in function. In addition, 
the gut microbiome has a spatial dimension, with composition gradients along 
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the di$erent parts of the intestinal tract, yet due to sampling di%culties, fecal 
samples are used as a proxy for the entire extent of the intestinal tract lumen. 
Localized sampling would aid in deciphering the actual biology in the intestine.
Alternatively, FMT could be used to optimize microbiota composition in individ-
uals at risk for cardiovascular disease. FMT has been shown to be e%cacious with 
limited adverse e$ects.162 However, optimal FMT approaches, including donor 
selection, screening and preparation, have yet to be de"ned.163,164 In addition, the 
long-term e$ects of FMT are not clear, since the follow-up in most studies is less 
than a year.  As our understanding of the gut microbiome progresses, so does our 
knowledge of potential risks of FMT. To illustrate, bacteriophages – long under-
studied yet now known to play an important role in the microbiome - were shown 
to be transferred from donor to host by FMT, with uncertain implications.165

To date, only one FMT trial targeted cardiovascular risk by transplantation 
from lean vegan donors to meat-consuming subjects with metabolic syndrome in 
order to lower TMAO levels.166 Despite alterations in gut microbiota composition, 
TMAO levels did not change upon this intervention. Other FMT trials in obesi-
ty and metabolic syndrome also showed that e$ects on microbiota composition 
and glucose metabolism are small and transient, underlining the importance of 
pre-screening in order to select recipients most likely to respond.167,168 To that end, 
a better understanding of the structural and functional aspects of the microbiota 
that a$ect hypertension and atherosclerosis incidence is needed.

Prebiotics and dietary interventions target gut microbiota composition in-
directly. Prebiotics selectively stimulate speci"c microbes in the colon. Prebiotics 
are o#en "bers, although not all "bers are prebiotics.169 Prebiotics were shown to 
stimulate growth of SCFA-producing microbes such as Bi$dobacterium and Lac-
tobacillus. Diet also has a substantial in&uence on gut microbiota composition. 
Dietary interventions such as the DASH and the Mediterranean diet were shown 
to lower cardiovascular risk.170,171 However, since dietary interventions are multi-
faceted, it is di%cult to point out what mechanisms explain the bene"cial e$ects.
In summary, multiple interventions could target gut microbiota composition 
and its associated metabolites, ranging from targeted approaches to more acces-
sible but non-speci"c interventions. However, translation of "ndings from ani-
mal studies to humans is needed, preferably by prospective cohort studies using 
metagenomic sequencing that can also assess microbiome functionality. In addi-
tion, adjusting for confounders when assessing associations between microbiota 
and cardiovascular disease is vital, since microbiota composition is shaped by a 
combination of lifestyle factors, health conditions and medication use.
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Conclusion
!e pathways by which gut microbiota a$ect hypertension and atherosclerosis are 
diverse and o#en interact, as shown in Figure 4. Gut microbiota produce or con-
vert metabolites, produce substrates needed for production of metabolites else-
where and are involved in regulating local intestinal homeostasis, resulting in a 
wide range of potential therapeutic targets. However, our understanding of mech-
anisms is mainly based on animal research and translation to humans remains 
challenging, as illustrated by developments in bile acid receptors research. Lon-
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Figure 4: Graphical abstract
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gitudinal studies in human subjects are needed to identify bene"cial or adverse 
characteristics of gut microbiota structure and functionality, in order to better 
target potential therapeutic strategies.
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Abstract
Background and aims: Since plasma metabolites can modulate blood pressure 
(BP) and vary between men and women, we examined sex di$erences in plasma 
metabolite pro"les associated with BP and sympathicovagal balance. Our secon-
dary aim was to investigate associations between gut microbiota composition and 
plasma metabolites predictive of BP and heart rate variability (HRV).

Methods: From the HELIUS cohort, we included 196 women and 173 men. O%ce 
systolic BP and diastolic BP were recorded, and heart rate variability and barore-
ceptor sensitivity (BRS) were calculated using "nger photoplethysmography. Plas-
ma metabolomics was measured using untargeted LC-MS/MS. Gut microbiota 
composition was determined using 16S sequencing. We used machine learning 
models to predict BP and HRV from metabolite pro"les, and to predict metabolite 
levels from gut microbiota composition.

Results: In women, best predicting metabolites for systolic BP included diho-
mo-lineoylcarnitine, 4-hydroxyphenylacetateglutamine and vanillactate. In men, 
top predictors included sphingomyelins, N-formylmethionine and conjugated 
bile acids. Best predictors for HRV in men included phenylacetate and gentisa-
te, which were associated with lower HRV in men but not in women. Several 
of these metabolites were associated with gut microbiota composition, including 
phenylacetate, multiple sphingomyelins and gentisate.

Conclusions: Plasma metabolite pro"les are associated with BP in a sex-speci"c 
manner. Catecholamine derivatives were more important predictors for BP in 
women, while sphingomyelins were more important in men. Several metabolites 
were associated with gut microbiota composition, providing potential targets for 
intervention.
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Introduction
Hypertension is the leading cause of cardiovascular disease and mortality world-
wide for both men and women.1,2 Although hypertension is generally more prev-
alent in men, hypertension prevalence at older age is higher in women due to 
a steeper increase in blood pressure (BP) than men from the third decade on.3 
Additionally, women have a higher risk of cardiovascular disease compared to 
men for every increment in BP and a higher prevalence of hypertension mediated 
organ damage.4–6 Despite established sex di$erences in BP life trajectories and 
autonomic cardiovascular control,3,7 sex di$erences in pathophysiology of hyper-
tension remain incompletely understood.

!e autonomic nervous system has a central role in BP regulation. Changes 
in BP lead to activation of the baroreceptors that regulate heart rate, myocardial 
contractility and vascular resistance.8 As such, the sympathovagal tone mediates 
baroreceptor sensitivity, which is the interaction between changes in blood pres-
sure and heart rate, and heart rate variability, de"ned by the variation in time 
intervals between heartbeats.9,10 !e complex interplay of cardiometabolic and 
neurohumoral systems that regulate BP is re&ected by the plasma metabolome.11 
!e plasma metabolome can be de"ned as the collection of products and interme-
diates of cellular metabolism smaller than 1.5 kDa. 

Sex is an important determinant of metabolome pro"les, since more than 
half of the metabolites have been shown to di$er between men and women.12 !ese 
di$erentially abundant metabolites not only include metabolites of sex hormones, 
but also other lipids, such as carnitines and sphingomyelins, and a range of amino 
acids. Other key determinants of the plasma metabolome are metabolic condi-
tions, dietary intake, and medication use.13–16 In addition, accumulating evidence 
shows that the gut microbiome can modulate the circulating pool of small-mol-
ecule metabolites.17,18 !e gut microbiota, and particularly short chain fatty acid 
producing microbes, have been associated with BP levels, and could modulate BP 
by production of metabolites.19 Indeed, the gut microbiome has been shown to be 
able to modulate the plasma metabolome in intervention studies targeting the gut 
microbiota such as fecal microbiota transplantations.20

Previous studies that assessed the relation between plasma metabolite pro-
"les and BP found that long chain fatty acids such as hexadecadienoate, ceramide, 
glycerolipids, and several amino acids levels were predictive of BP.21–24 However, 
most studies did not look at sex-speci"c associations of metabolites with BP or 
only conducted sensitivity analyses in a subset of metabolites. We assessed sex-spe-
ci"c plasma metabolite pro"les that are associated with blood pressure and auto-
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nomic cardiovascular control, in order 
to better understand sex di$erences in 
hypertension. We performed machine 
learning analyses to predict BP, barore-
ceptor sensitivity (BRS) and heart rate 
variability (HRV) from plasma me-
tabolite pro"les for men and women 
separately. As a secondary analysis, we 
investigated the associations between 
gut microbiota composition and the 
plasma levels of the metabolites pre-
dicting BP and HRV, as these could 
associations could provide potential 
targets for intervention.

Patients and methods

Study population
We used baseline data and plasma samples collected between 2011 and 2015 from 
the HEalthy LIfe in an Urban Setting (HELIUS) cohort study, a large prospec-
tive multi-ethnic population-based study conducted in Amsterdam, the Nether-
lands.25 Individuals aged between 18 and 70 years were randomly sampled from 
the municipality registry strati"ed for ethnicity (Dutch, Surinamese, Ghanaian, 
Turkish or Moroccan origin). All participants of HELIUS provided written in-
formed consent and the HELIUS study was approved by the medical ethical re-
view board of the Amsterdam UMC, location AMC. !is study followed the prin-
ciples of the Declaration of Helsinki.

Data were collected by questionnaire and during morning study visits at 
local research sites. A total of 24,788 participants could be included in HELIUS, 
of which 22,164 completed a visit at the research location. Of those, 6,048 handed 
in a stool sample. All participants were asked to refrain from using any vasoactive 
medication and smoking. Medication use was registered. Height and weight were 
measured and body mass index (BMI) was calculated. BP was measured a#er 5 
minutes of rest in the supine position, using the average of two consecutive mea-
surements of a validated semi-automatic oscillometric device (Microlife WatchBP 

Highlights
• Sphingomyelins (men) and 

catecholamine metabolites (women) 
showed sex-speci"c associations with 
blood pressure (BP).

• Several metabolites were associated 
with gut microbiota composition, 
providing potential targets for 
intervention.

• Plasma metabolites could have sex-
dependent e$ects on BP and are o#en 
only associated with BP in either men 
or women.
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Home; Microlife AG, Switzerland). Following 10 minutes of supine rest, non-in-
vasive continuous blood pressure measurements were taken for 5 minutes using 
"nger photoplethysmography (Nex"n, Edwards Lifesciences, Irvine, California). 
Venous blood samples were drawn, from which fasting glucose and creatinine lev-
els were measured. Estimated glomerular "ltration rate (eGFR) was calculated us-
ing the CKD-EPI formula. Urinary albumin-to-creatinine ratio was determined 
from early morning spot urine samples. Albuminuria was categorized into di$er-
ent stages using the ACR KDIGO classi"cation.26 Diabetes was de"ned based on 
fasting glucose levels (≥7 mmol/L) or use of glucose-lowering medication. Hy-
pertension was de"ned according to guidelines as an elevated systolic BP >140 
mmHg or diastolic BP (DBP) >90 mmHg or use of antihypertensive medication.27 

For the metabolomics substudy, 370 subjects were selected from 4 ethnic 
groups (South-Asian Surinamese, African Surinamese, Ghanaian and Dutch 
origin), and had preserved renal function (estimated glomerular "ltration rate 
(eGFR) > 60 ml/min). Per ethnic group, we selected subjects from the cohort so 
that 50% had early-stage albuminuria (ACR KDIGO stage A2, 3-30 mg/mmol) in 
an otherwise random manner. 

Plasma metabolomics
For untargeted metabolite pro"ling, fasting EDTA plasma samples were collected 
and shipped to Metabolon (Durham, North Carolina, USA). Plasma metabolites 
were measured by ultra-high-performance liquid chromatography coupled to 
tandem mass spectrometry (UPLC-MS/MS) in 369 samples. 

!e plasma samples were kept at -80°C until further processing. Several 
recovery standards were added prior to the "rst step in the extraction process for 
QC purposes. Proteins were precipitated with methanol under vigorous shaking 
for 2 min followed by centrifugation. !e extract was divided over di$erent sam-
ples for the several UPLC methods, and put brie&y on an evaporator to remove the 
solvent. Controls such as a sample with pooled plasma from all samples (technical 
replicate) and extracted water samples (blanks) were included in the same batch. 
A cocktail of QC standards was spiked into each analyzed sample for instrument 
performance monitoring and chromatographic alignment. 

!e UPLC methods used a Waters ACQUITY UPLC and a !ermo Sci-
enti"c Q-Exactive high resolution/accurate mass spectrometer interfaced with a 
heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer op-
erated at 35,000 mass resolution. !e sample extract was dried then reconstituted 
in solvents compatible with each of the four methods. !e reverse phase meth-
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ods used C18 columns (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) while the 
HILIC method used a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 
1.7 µm). !e MS analysis alternated between MS and data-dependent MSn scans 
(mass range 70-1000 m/z) using dynamic exclusion. Compounds were identi"ed 
by comparison to library entries of puri"ed standards or recurrent unknown en-
tities. Biochemical identi"cations were based on a retention index within a nar-
row window, accurate mass match ±10 ppm, and the MS/MS forward and reverse 
scores between the experimental data and authentic standards. For more details 
on the UPLC-MS/MS methods we refer to Supplement 1 and a list of identi"ed 
metabolites is provided in Supplement 2.

Missing values were attributed to sample measurement falling below de-
tection limits and were imputed with the minimal observed value. Prior to the 
analyses, we excluded metabolites that were labeled by Metabolon as xenobiotic 
(super pathway), which included metabolites of medication, resulting in a dataset 
of a total of 722 metabolites for analysis. Lipid annotations that were too long 
to show in the data visualizations were abbreviated using the short lipid species 
level notation of the LIPID MAPS nomenclature 28. For instance, sphingomyelin 
(d18:2/14:0, d18:1/14:1)* was annotated as SM 32:2.  

Processing of continuous !nger BP measurements
xBRS and HRV data calculated from continuous "nger BP measurements was 
available for 139 subjects. Raw beat-to-beat data consisting of inter-beat intervals 
(IBI) and systolic BP values were exported from the Nex"n device and analyzed 
in Matlab (R2019a; !e MathWorks, Inc.).29 A moving average "lter was applied 
to the beat-to-beat data to exclude measurement artefacts and ectopic beats.30 A 
recording was excluded from further analysis if more than 20% of beats needed 
to be removed or if there was no continuous segment of 30 beats without internal 
calibration available. To quantify HRV, the standard deviation of normal-to- nor-
mal intervals (SDNN) was calculated.31 BRS was determined with a cross-cor-
relation method.32 Each 10 second interval of IBI was cross-correlated with a 10 
second interval of systolic BP measurements, with a time shi# varying between 0 
and 5 seconds, in which systolic BP preceded IBI. !e time delay with maximum 
correlation was chosen, from which cross-correlation estimation of BRS (xBRS) 
was calculated by dividing the standard deviation (SD) of the IBI by the SD of the 
systolic BP for that segment. xBRS of the complete recording was de"ned as the 
geometric mean of all segments with signi"cant positive correlation (p<0.05). 
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Gut microbiota composition
Participants were asked to bring a fresh faecal sample within 6 hours a#er collec-
tion, or, if not possible, to store the sample overnight in a freezer. Samples were 
stored at −20°C at the study visit location for a maximum of 1 day before trans-
portation to the central freezer (-80°C). Samples obtained from participants who 
either had diarrhoea in the week prior to collection or used antibiotics within 
three weeks prior to collection were excluded. Samples were shipped to the Wal-
lenberg Laboratory (Sahlgrenska Academy at University of Gothenburg, Sweden) 
for sequencing. DNA was extracted from 150 mg aliquot of faecal samples using a 
repeated bead-beating protocol.33 Faecal microbiota composition was determined 
by sequencing the V4 region of the 16S rRNA gene on an Illumina MiSeq (llumi-
na RTA v1.17.28; MCS v2.5, San Diego, CA, USA) using 515F and 806R primers 
designed for dual-indexingand the V2 Illumina kit (2x250 bp paired-end reads).34  
PCR was performed in duplicate reactions as previously described.35 Preprocess-
ing of the raw sequencing data is described in Supplement 3. 

Machine learning models
We used machine learning analyses for three di$erent aims: 1) to predict sex from 
metabolite pro"les (as descriptive analysis); 2) to predict BP, HRV and xBRS from 
metabolite pro"les; 3) to predict highest ranked metabolites resulting from the 
previous models from gut microbiota composition. !e advantages of a tree-based 
machine learning model compared to univariate tests (t-tests, regressions) are the 
possibility to include a large number of variables in one model which improves 
power in this relatively small sample size, and the robustness to nonnormal dis-
tributions of variables. XGBoost is a commonly used algorithm that uses extreme 
gradient boosting to improve accuracy, and has been shown to provide accurate 
and e%cient predictions across di$erent omics analyses.36–38

All machine learning models used the XGBoost algorithm in a nested 
cross-validation design (Supplement 4).39 In each iteration, the dataset was ran-
domly split into a test set containing 20% of the subjects and a training set with 
the remaining 80%. Within the train set, 5-fold cross-validation was performed in 
order to optimize the model hyperparameters. Two random variables were added 
to the determinants in each iteration to serve as a benchmark. !e resulting mod-
el was evaluated on the test set which yielded an area under the receiver-operator 
curve (AUC) for classi"cation models, and explained variance (%) for continuous 
outcomes as main model quality metrics. In addition, each iteration resulted in a 
ranked list of metabolites with their relative importance to the prediction. !ese 
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were recorded for each iteration and were averaged across 200 iterations. Because 
of the de"nition of the explained variance score formula,40 the explained variance 
score could also be a negative value, meaning that the prediction is worse than 
an intercept. To ensure that these models were not over"tted, we ran identical 
models in which the data was permuted prior to every iteration. Results of these 
permuted models can be found in Supplement 5. 

First, we used the machine learning classi"cation model described above to 
assess which of the 722 plasma metabolites (determinants) were most predictive 
of sex (as binary outcome). !is resulted in a median AUC and a list of the 15 me-
tabolites that had the highest feature importance for this prediction. !e feature 
importance was set at 100% for the "rst metabolite, with the other metabolites’ 
importance calculated relative to the "rst.

!erea#er, we ran machine learning models to predict systolic BP, diastolic 
BP, xBRS and HRV from the 722 plasma metabolites for men and women sepa-
rately. Each of these eight models resulted in a median explained variance score 
and ranking of the most important metabolites for the prediction. In addition, 
since sex di$erences in BP change during aging, we performed subgroup analyses 
strati"ed for age (50 and >50 years) with an identical set-up. Since a proportion of 
12.2% of participants had diabetes, and diabetes impacts both metabolite pro"les 
and blood pressure substantially, we decided to also perform a sensitivity analysis 
in subjects without diabetes. With these models, we aimed to assess if the asso-
ciations in the main models were driven by subjects with diabetes. !e design of 
these models was identical to the models for systolic and diastolic BP described 
above.

To assess which of the highest ranked metabolites could be explained by gut 
microbiota composition, we used the same machine learning models, but with the 
ASVs (as gut microbiota composition) as determinants and the metabolite con-
centrations as outcome. We selected the top 10 metabolites from the BP, HRV and 
BRS models with an explained variance of more than 5% by the metabolite pro-
"les. We selected ASVs with more than 5 counts in 30% of the subjects, resulting 
in a data set with 368 subjects and 146 ASVs. For each of the selected metabolites, 
we ran a separate machine learning regression model to predict the levels of this 
metabolite from the ASVs. 

!e machine learning models were implemented in Python (v.3.8.6) us-
ing the XGBoost (v.1.2.0), numpy (v.1.19.2), pandas (v.1.1.4), and scikit-learn 
(v.0.23.2) packages.39,40 !e conda environment set-up (yaml "le), two parameter 
grids (one for metabolite models and one for microbiota models) and outputs of 
all models were shared in a public repository (doi:10.5281/zenodo.7684283).

https://doi.org/10.5281/zenodo.7684283
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Statistics
Di$erences in descriptive and outcome variables between men and women were 
tested using t-tests for continuous variables with normal distributions, Wilcoxon 
rank tests for continuous variables with non-normal distributions and chi-square 
tests for categorical variables using the tableone package (v.0.13.2). As a descrip-
tive analysis to assess sex di$erences in the metabolite pro"les, we "rst performed 
a principal component analysis a#er scaling and centering of the metabolite data 
set containing 722 metabolites using a variance-covariance matrix (prcomp func-
tion in R). 

To obtain e$ect sizes for the associations of the top 10 highest ranked me-
tabolites for each machine learning model (systolic BP, diastolic BP, HRV and 
xBRS), we used linear regression models that were adjusted for age, BMI, eGFR, 
diabetes and albuminuria, and strati"ed for sex. We only ran these linear regres-
sion models if the machine learning model had an explained variance higher than 
1%. !e e$ect sizes were plotted in a forest plot showing the beta (per SD increase 
in metabolite levels) with 95%-con"dence intervals (95%-CI). HRV and xBRS 
were log10-transformed because of their skewed distributions. We used unstrat-
i"ed models with the same covariates to test the interaction of the associations 
with sex. For the each of 10 highest ranked ASVs per metabolite model, we used 
linear regression models to assess associations between these ASVs and the re-
spective metabolite. For these models, the log10-transformed ASV counts were 
used as determinants and the metabolite levels (scaled with a mean of 0 and SD 
of 1) as outcomes. 

All analyses and data visualizations were performed in RStudio 
(v.2022.7.2.576) using R (v.4.2.1). !e scripts of all analyses and an renv lock"le 
were shared in a public repository (doi:10.5281/zenodo.7684283).

Data availability
!e HELIUS clinical and metabolomics data are owned by the Amsterdam UMC, 
location AMC in Amsterdam, !e Netherlands. As participants gave consent 
for re-use only within the aims of the HELIUS study, access to the HELIUS data 
needs to be granted by the HELIUS board. Any researcher can request the data 
by submitting a proposal to the HELIUS Executive Board (heliuscoordinator@
amsterdamumc.nl) as outlined at http://www.heliusstudy.nl/en/researchers/col-
laboration. !e HELIUS Executive Board will check proposals for compatibili-
ty with the general objectives, ethical approvals and informed consent forms of 
the HELIUS study. Access is granted to all researchers a%liated with an inter-

https://doi.org/10.5281/zenodo.7684283
http://www.heliusstudy.nl/en/researchers/collaboration
http://www.heliusstudy.nl/en/researchers/collaboration
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nationally recognized research institution who request to use the HELIUS data, 
a#er having signed the data transfer agreement. !e 16S sequencing data are 
available in the European Genome-Phenome Archive (EGA), accession number 
EGAD00001004106 (https://ega-archive.org/datasets/EGAD00001004106). 

Results

Population characteristics and top predicting metabolites
Population characteristics of this subset of the HELIUS cohort are shown in Table 
1. !e study population consisted of 173 (46.9%) men and 196 (53.1%) women. 
Men were on average older than women but had on average lower BMI, although 
these di$erences were not signi"cant. More men than women were active smok-
ers (p<0.01). Both systolic and diastolic BP were signi"cantly higher in men than 
in women (Figure 1A,B), and accordingly, hypertension was more prevalent in 
men. However, use of antihypertensive medication was comparable between the 
groups. xBRS was higher in women than men (p<0.01; Figure 1C). In addition, 
HRV tended to be higher in women compared with men (p=0.15; Figure 1D). !e 
characteristics of the subgroup of patients with available xBRS and HRV data are 
presented in Supplement 6.

A principal component analysis showed slightly di$erent metabolome pro-
"les between men and women, but also substantial overlap (Figure 1E). A classi-
"cation model to predict sex from metabolite pro"les had a median AUC of 0.96. 
Best predicting metabolites for sex included testosterone metabolites (5α-andros-
tan-3α,17β-diol derivatives), a progesterone metabolite (pregnanediol disulfate), 
amino acids including creatinine, and a sphingomyelin (SM 32:2; Figure 1F). All 
of these metabolites had higher levels in men, except SM 32:2, which was higher 
in women (Supplement 7).

Di$erent plasma metabolites predict BP in males and females 
!e machine learning analyses to predict BP from metabolite pro"les showed an 
explained variance for systolic BP of 7.59% for men and 11.16% for women, while 
the models for diastolic BP had an explained variance of only 0.03% for men and 
7.75% for women (Supplement 8). To further investigate the low explained vari-
ance for diastolic BP in male subjects, we repeated this analysis strati"ed for age 
group (<50 and ≥50 years; Supplement 9). !is subgroup analysis showed an ex-

https://ega-archive.org/datasets/EGAD00001004106
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Table 1: Study population

Overall Women Men p

n 369 196 173

Age (years) 51.7±11.3 50.7±11.6 52.9± 10.9 0.063

Age ≥50 years 154 (41.7)            91 (46.4) 63 (36.4) 0.066

BMI (kg/m2) 27.5±5.2 27.9±5.9 27.0±4.2 0.065

Ethnicity 0.263

Dutch 84 (22.8) 39 (19.9) 45 (26.0)

South-Asian Surinamese 101 (27.4) 50 (25.5) 51 (29.5)

African Surinamese 105 (28.5) 62 (31.6) 43 (24.9)

Ghanaian 79 (21.4) 45 (23.0) 34 (19.7)

Current smoking 67 (18.2) 24 (12.3) 43 (24.9) 0.003

Diabetes 45 (12.2) 19 (9.7) 26 (15.0) 0.160

Hypertension 215 (58.3) 98 (50.0) 117 (67.6) 0.001

Antihypertensive medication 107 (29.0) 53 (27.0) 54 (31.2) 0.443

Systolic BP (mmHg) 136.2±21.2 133.0±21.7 139.8±19.9 0.002

Diastolic BP (mmHg) 83.2±11.5 80.2±10.8 86.7±11.3 <0.001

xBRS (ms/mmHg) 11.8±6.6 10.3±5.2 13.6±7.5 0.003

HRV (SDNN) 0.05±0.02 0.05±0.02 0.05±0.02 0.358

eGFR (ml/min/1.73m2) 95.0±19.5 97.8±19.8 91.8±18.7 0.003

Albuminuria 169 (45.8) 87 (44.4) 82 (47.4) 0.635

LDL (mmol/L) 3.1±0.9 3.1±0.9 3.1±0.9 0.836

HDL (mmol/L) 1.5±0.4 1.6±0.4 1.3±0.4 <0.001

Triglycerides (mmol/L) 1.1±0.9 0.9±0.5 1.3±1.1 <0.001

Data is presented as mean±SD or n (%). Sex di%erences were tested with t-test for continuous 
variables and chi-square tests for categorical variables. BMI = body mass index, BP = 
blood pressure, eGFR = estimated glomerular $ltration rate (CKD-EPI), HRV = heart 
rate variability, SDNN = standard deviation of NN intervals, xBRS = cross-correlation 
baroreceptor sensitivity.
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plained variance of 9.1% for diastolic BP for the young age group in males, while 
there was no explained variance in older males. In systolic BP, there also was a 
clear di$erence in explained variance between young and older subjects for both 
men and women.  

In women, best predictors for systolic BP included long chain acylcarnitines 
(dihomo-lineoylcarnitine), catecholamine degradation products (4-hydroxyphe-
nylacetateglutamine and vanillactate) and metabolites that could potentially be 
related to S-adenosylmethionine formation (2,3-dihydroxy-5-methylthio-4-pen-
tenoic acid (DMTPA) and 1-methyladenosine). !e best predictor for diastolic 
BP in women was acetylcitrulline, a urea cycle metabolite. In addition, the list 
of best predictors included several steroids, including androgenic, progestin and 
corticosteroids, as well as catecholamine metabolites and serotonin. In men, best 
predicting metabolites for systolic BP included sphingomyelins, N-formylmethi-
onine, conjugated bile acids, and N-acyl amino acids.

Next, we performed a sensitivity analysis excluding diabetic patients, to 
assess if the machine learning results are driven by the presence of diabetes (Sup-
plement 10). !e best predictors for BP in these analyses showed overlap with 
the "ndings in the total study population. In women, top predictors for systolic 
BP still included acylcarnitines, vanillactate, and DMTPA, and acetylcitrulline 
persisted as the highest ranked predictor for diastolic BP. However, uridine-re-
lated metabolites and C-glycosyltryptophan became higher ranked predictors for 
systolic BP than in the general model. In men, the highest ranked predictors for 
systolic BP were comparable to the total population.

BP-predicting metabolites have interactions with sex in adjusted 
models
We used linear regression models to obtain e$ect sizes of the associations between 
the top predicting metabolites and BP, while adjusting for relevant confounders 
such as age, sex, BMI, eGFR, diabetes and albuminuria (Figure 2). !e three high-
est ranked metabolites for systolic BP in women, a long chain acylcarnitine and 
two catecholamine related metabolites, had signi"cant interactions with sex and 
were only associated with higher systolic BP in women but not in men. Diho-
mo-lineoylcarnitine, 4-hydroxyphenylacetylglutamine and vanillactate showed 
similar e$ect sizes and were associated with a 4.54 mmHg (95%-CI 1.81, 7.28), 
3.74 mmHg (95%-CI 0.54, 6.94) and 4.36 mmHg (95%-CI 1.33, 7.39) mmHg 
higher systolic BP per SD increase in women. 

Sphingomyelins (SM 38:3, SM 42:4 and SM 40:3) and conjugated bile acids 
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had signi"cant interactions with sex and were only associated with systolic BP in 
men, while N-acetylglutamate showed a stronger association in men than women, 
but had no signi"cant interactions. SM 38:3 (+2.92 mmHg (95%-CI 0.29, 5.55) 
per SD increase), N-formylmethionine (+5.18 mmHg (95%-CI 2.09, 8.27)), and 
glycochenodeoxycholate (+3.70 mmHg (95%-CI 1.04, 6.36)) had the largest e$ect 
sizes and were associated with higher systolic BP in the adjusted linear regression 
model.

We only performed linear regression analyses for the best predicting me-
tabolites associated with diastolic BP in women (Figure 2C), since the machine 
learning model for men had very low explained variance. N-acetylcitrulline (+1.65 
mmHg (95%-CI 0.16, 3.15)), a nitric oxide pathway metabolite, and N-formylme-
thionine (+2.55mmHg (95%-CI 1.09, 4.02) were associated with higher diastolic 
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Figure 1: Descriptive characteristics
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BP in women, while androsterone sulfate (-1.79mmHg (95%-CI -3.33, -0.24) was 
associated with lower diastolic BP. 

Sex speci!c di$erences in predicting xBRS and HRV from plasma 
metabolites
!e machine learning models for xBRS and HRV performed better in men than 
in women. !e explained variance of xBRS was 3.5% in men compared to 0.8% 
in women, while the explained variance of HRV was 15.6% in men and none in 
women. Strati"cation for age of the HRV models in female participants did not 
improve model performance substantially (data not shown). Of the top 10 pre-
dictors for xBRS and HRV in men, 6 predictors were overlapping. !ese included 
sphingomyelin, N−acetylneuraminate (also known as sialic acid), isobutyrylcar-
nitine, phenylacetate and 3beta−hydroxy−5−cholestenoate. For women, the top 
predictors for xBRS included several pregnane steroids. 

For the linear regression analyses, we focused on the best predictors for 
men, since the models in women had essentially no explained variance. Of the 
best predictors for HRV in male participants, "ve metabolites were associated 
with HRV in the adjusted regression models (Supplement 11). Four metabolites 
were associated with a higher HRV (N-acetylneuraminate, isobutyrylcarnitine, 
gentisate, phenylacetate) and one with lower HRV (3beta-hydroxy-5-choleste-
noate). In addition, two metabolites were associated with higher xBRS (isobu-
tyrylcarnitine and gentisate) and two with lower xBRS (1,5-anhydroglucitol and 
1-oleoyl-GPC). Several metabolites, including N-acetylneuraminate, phenylace-
tate, gentisate, and 3beta-hydroxy-5-cholestenoate, had an interaction with sex 
and were only associated with HRV or xBRS in men but not in women, or even 
showed opposite associations, such as for isobutyrylcarnitine.

Gut microbiota composition is associated with plasma metabolite 
levels
Since gut microbiota composition is a key determinant of the plasma metabolite 
pro"le, we wanted to assess whether the top 10 metabolites for systolic BP (men 
and women), diastolic BP (women) and HRV (men) models could be explained 
by gut microbiota composition. Using machine learning prediction models, we 
found ten metabolites that were associated with gut microbiota composition (Fig-
ure 3).   

Phenylacetate had the highest explained variance (14.2%) by gut microbi-
ota composition. !e top microbial predictors for phenylacetate levels predomi-
nantly consisted of microbes from the Ruminococcaceae family, including several 
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ASVs from UCG-002 and UCG-005 genera, and Intestinimonas spp, from the Os-
cillospiraceae family in the same order (Figure 4G). !ese were associated with 
higher phenylacetate levels in an adjusted regression model. In contrast, higher 
abundance of Blautia spp., from the Lachnospiraceae family, was associated with 
lower phenylacetate levels. !e associations with Blautia spp. and Ruminococca-
ceae spp. had interactions with sex and were stronger in men than women in the 
strati"ed models (Supplement 12). 

Gut microbiota composition explained 5.7% of gentisate variance. !e top 
predictors were associated with higher gentisate levels in the adjusted model, and 
mostly included microbes from the Clostridiales order, and more speci"cally 
from Ruminococcaceae (Ruminococcaceae UCG-005, Faecalibacterium prausnitzii, 
Subdoligranulum spp.), Lachnospiraceae (Marvinbryantia spp., Roseburia spp.), 
and Christensenellaceae (Christensenellaceae R-7 group spp.) families (Figure 4H). 

Four sphingomyelins could be explained by gut microbiota composition by 
3.5-4.4%. Microbes from the Ruminococcaceae family were associated with high-
er sphingomyelin levels across the di$erent sphingomyelins (Figure 4A,B,C,I). 
Vanillylmandelate (Figure 4D), serotonin (Figure 4E), epiandosterone (Figure 
4F) and glycerate (Figure 4J) had explained variances ranging from 2.0 to 3.2%. 

4.4% 4.5% 3.5% 3.2% 2.0% 3.0% 5.7% 14.2% 3.0% 2.7%
SBP DBP HRV

sp
hin

go
mye

lin 
(38

:3)

sp
hin

go
mye

lin 
(42

:4)

sp
hin

go
mye

lin 
(40

:3)

va
nill

ylm
an

de
lat

e

se
rot

on
in

ep
ian

dro
ste

ron
es

ulf
ate

ge
nti

sa
te

ph
en

yla
ce

tat
e

sp
hin

go
mye

lin 
(38

:1)

gly
ce

rat
e

−30
−25
−20
−15
−10

−5
0
5
10
15
20
25
30
35
40
45
50

Ex
pl

ai
ne

d 
va

ria
nc

e 
(%

)

Explained variance of metabolites from microbiota composition

Explained variance in % per iteration is shown. Each metabolite is annotated with the median ex-
plained variance of the machine learning model (XGBoost algorithm).

Figure 3: Explained variance of plasma metabolites by microbiota 
composition



Chapter 6186

Bacteroides vulgatus
Bacteroides spp..1

Butyricicoccus faecihominis
Lachnospiraceae_FCS020_group spp.

Ruminococcus_1 bicirculans
Bacteroides spp.

Bifidobacterium spp.
Anaerostipes hadrus

Ruminococcaceae spp.
Prevotella_9 copri

−0.75−0.50−0.25 0.00 0.25 0.50 0.75
Change in metabolite (SD) per log10 increase in ASV

sphingomyelin (38:3)A

Bifidobacterium spp..1
Bacteroides spp.

Dorea longicatena
Odoribacter splanchnicus

Intestinimonas spp.
Ruminococcus_1 bicirculans

Intestinibacter bartlettii
Haemophilus spp.

Enterorhabdus spp.
Bifidobacterium spp.

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
Change in metabolite (SD) per log10 increase in ASV

sphingomyelin (42:4)B

Bacteroides vulgatus
Ruminococcaceae_UCG−002 spp.

Lachnoclostridium spp.
Lachnospiraceae spp.

Bacteroides spp.
Anaerostipes hadrus

Ruminococcus_1 bicirculans
Bifidobacterium spp.

Lachnospira spp.
Prevotella_9 copri

−0.75−0.50−0.25 0.00 0.25 0.50 0.75
Change in metabolite (SD) per log10 increase in ASV

sphingomyelin (40:3)C

Lachnospiraceae_ND3007_group spp.
Christensenellaceae_R−7_group spp.

Butyricicoccus faecihominis
Bacteroides spp.
Romboutsia spp.

Holdemanella spp.
Slackia isoflavoniconvertens

Lachnospiraceae spp.
Agathobacter spp.

Faecalibacterium CM04−06

−0.75−0.50−0.25 0.00 0.25 0.50 0.75
Change in metabolite (SD) per log10 increase in ASV

vanillylmandelate (VMA)D

Lachnospiraceae spp.
Escherichia/Shigella spp.

Lachnospiraceae_NK4A136_group spp.
Subdoligranulum spp.

Ruminococcus_2 bromii
Butyricicoccus spp.

Clostridium_sensu_stricto_1 spp.
Prevotella_9 copri

Sutterella spp.
Prevotella_9 spp.

−0.75−0.50−0.250.00 0.25 0.50 0.75
Change in metabolite (SD) per log10 increase in ASV

serotoninE

Blautia spp.
Bacteroides spp.

Roseburia inulinivorans
Escherichia/Shigella spp.

Lachnospiraceae spp.
Ruminococcaceae_NK4A214_group spp.

Intestinimonas spp.
Prevotella_9 spp.

Bifidobacterium spp.
Prevotella_9 copri

−0.75−0.50−0.250.00 0.25 0.50 0.75
Change in metabolite (SD) per log10 increase in ASV

epiandosteroneF

Ruminococcaceae_UCG−005 spp..2
Ruminococcaceae_UCG−005 spp..1

Bifidobacterium spp.
Intestinimonas spp.

Alistipes obesi
Blautia spp.

Ruminococcaceae_UCG−005 spp.
Ruminococcaceae_UCG−002 spp..1
Ruminococcaceae_UCG−002 spp.

Ruminococcaceae spp.

−0.75−0.50−0.25 0.00 0.25 0.50 0.75
Change in metabolite (SD) per log10 increase in ASV

phenylacetateG

Alistipes shahii
Subdoligranulum spp.

Ruminococcaceae spp.
Haemophilus spp.

Marvinbryantia spp.
Faecalibacterium prausnitzii

Ruminococcaceae_UCG−005 spp.
Roseburia spp.

Christensenellaceae_R−7_group spp.
Intestinibacter bartlettii

−0.75−0.50−0.25 0.00 0.25 0.50 0.75
Change in metabolite (SD) per log10 increase in ASV

gentisateH

Enterorhabdus spp.
Eggerthellaceae spp.
Bacteroides vulgatus

Lachnospiraceae spp.
Senegalimassilia anaerobia

Haemophilus spp.
Odoribacter splanchnicus

Ruminococcaceae spp.
Lachnospira spp.

Ruminiclostridium_5 spp.

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
Change in metabolite (SD) per log10 increase in ASV

sphingomyelin (38:1)I

Lachnospiraceae_UCG−004 spp..1
Blautia faecis

Butyricicoccus spp.
Roseburia hominis

Clostridium_sensu_stricto_1 spp.
Lachnospiraceae_UCG−004 spp.

Lachnospira spp.
Lachnoclostridium spp.

Dorea formicigenerans
Roseburia spp.

−0.75−0.50−0.25 0.00 0.25 0.50 0.75
Change in metabolite (SD) per log10 increase in ASV

glycerateJ

Figure 4:  Linear regression models microbes and metabolites

Linear regression models for associations between plasma metabolites and best predicting microbes: 
estimates per log10 increase in abundance of microbe with 95% con$dence intervals, adjusted for age, 
sex, body mass index (BMI), renal function, diabetes and albuminuria. Bold font indicates that me-
tabolites had a signi$cant interaction (p<0.05) with sex in the adjusted model. #e estimates show 
how metabolite concentration changes (in standard deviations) for a log10 increase in the amplicon 
sequence variant (ASV) counts; e.g. in Figure 4G a 10-fold (log10) increase in Blautia spp. counts is 
associated with a 0.61 SD decrease in phenylacetate. 
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Discussion
We found that plasma metabolite pro"les are associated with blood pressure and 
autonomic cardiovascular control in a sex-speci"c manner. Sphingomyelins and 
conjugated bile acids were more predictive of BP in men, while metabolites from 
acylcarnitine and catecholamine pathways were better predictors in women. In 
addition, we could predict HRV from metabolite pro"les in men, but not in wom-
en, further underscoring potential sex di$erences in BP physiology. Several of 
the best predicting metabolites were associated with gut microbiota composition. 
!is could indicate that inventions targeted at the gut microbiota might have 
sex-speci"c e$ects, since plasma metabolites derived from the microbiota are dif-
ferently associated with blood pressure for men and women.

Acylcarnitines were among the top predictors for systolic BP in women, including 
the metabolite with the highest feature importance, dihomo-linolenoylcarnitine. 
Acylcarnitines are byproducts of incomplete beta-oxidation, which takes place in 
the mitochondria to generate acetyl-CoA from fatty acids. Accumulation of acyl-
carnitines could lead to in&ammation through induction of nuclear factor kappa 
beta activity and phosphorylation of JNK and ERK.41,42 Other metabolomics stud-
ies also found associations between acylcarnitines and BP, including one cohort 
with only female subjects, but these studies did not investigate sex di$erences.22

Interestingly, there were several metabolites belonging to the tyrosine path-
way among the top predictors. !e tyrosine pathway results in the synthesis of 
catecholamines, including dihydroxyphenylalanine (DOPA), dopamine, norepi-
nephrine and epinephrine. !e second-best predictor for systolic BP in women 
was 4-hydroxyphenylacetateglutamine, a glutamine conjugate of 4-hydroxyphe-
nylacetate, which is a derivative of tyrosine, an essential component of dopamine, 
norepinephrine and epinephrine. Vanillactate, the third ranked predictor, is a 
degradation product of DOPA. !e high ranking of 4-hydroxyphenylacetylglu-
tamine and vanillactate in the prediction of systolic BP in women could indicate 
that di$erent catecholamine pro"les have sex-speci"c e$ects. !is is in line with 
a study on sex di$erences in sympathetic activation in reaction to norephineph-
rine, that showed that there are sex di$erences in physiological mechanisms that 
regulate sympathetic cardiovascular control.7 

Not all machine learning models in our analyses performed well. !e pre-
diction model for diastolic BP in men had essentially no explained variance, which 
could have been caused by the changing relation between plasma metabolites and 
BP with age, considering the improved model performance a#er age strati"ca-
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tion. In contrast to systolic BP, diastolic BP shows an inverted U-shape trend with 
increasing age,43 and this nonlinear relation with age might have complicated the 
diastolic BP prediction from the metabolite pro"les. !e xBRS models had lower 
model metrics than the HRV models, possibly due to more noise in the xBRS data 
than in the HRV data, since xBRS is calculated using a combination of parameters 
(heart rate, blood pressure). Both the xBRS and HRV models had lower explained 
variance in women compared to men, which is in line with studies that showed 
that there are sex di$erences in the sympathetic neuro-humoral balance. For in-
stance, while there is a close association between sympathetic activity and vas-
cular resistance in men, this association is absent in premenopausal women.7,44,45 

!e HRV model in male subjects showed that N-acetylneuraminate, the 
most abundant sialic acid in human cells, was the highest ranked predictor for 
HRV. Sialylation (e.g. binding of sialic acid) of IgG can convert IgG from a pro-in-
&ammatory to an anti-in&ammatory state.46 In mice, supplementation with a si-
alic acid precursor could prevent obese mice from developing hypertension, and 
in humans, sialylated IgG was inversely associated with systolic BP.47 Another me-
tabolite associated with higher HRV was phenylacetate. Gut microbiota can pro-
duce phenylacetate from phenylalanine, and phenylacetate can be conjugated into 
phenylacetylglutamine by the liver.48 In our analyses, we could predict phenylac-
etate levels from gut microbiota composition, but not 4-hydroxyphenylacetylglu-
tamine, in contrast to other studies.49,50 Higher Blautia spp. abundance was asso-
ciated with higher phenylacetate levels and Ruminococcaceae spp. abundance was 
associated with lower phenylacetate levels. Altogether, this indicates that reducing 
phenylacetate levels through dietary or gut microbiome interventions could be a 
strategy to increase HRV. 

Sphingomyelins (SM 38:3, SM 42:4, SM 40:3 and SM 38:1) were among the best 
predictors for both systolic BP and HRV in males. !ese are membrane sphingo-
lipids that can be used in the synthesis of ceramide. Ceramide is central to sphin-
golipid metabolism, and has been shown to suppress phosphorylation of Akt and 
eNOS, thereby possibly lowering nitric oxide production and as a result, inducing 
vasoconstriction.51 In addition, sphingolipids have been associated with hyper-
tension and coronary artery disease.52,53 !ere are established sex di$erences in 
sphingolipid levels, as has also been shown in the HELIUS cohort,54 which could 
be caused by indirect e$ects of estrogen on adipose tissue or direct e$ects on the 
expression of sphingomyelinase.55 Gut microbiota including Bacteroides spp. have 
been previously shown to be able to produce sphingolipids and a$ect host cera-
mide metabolism in mice.56 In addition, we found that other prevalent microbes 
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Sex differences in associations of plasma metabolites with blood pressure and heart rate variability:  
the HELIUS study
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from the Bi$dobacterium genus, Ruminococcaceae family, Lachnospiraceae fami-
lies were associated with sphingomyelin levels. 

Glycochenodeoxcyholate-3-sulfate, a glycine-conjugated bile acid, was 
also associated with systolic BP in men, but not in women. Men have a larger 
total bile acids pool than women,57 and accordingly, the levels of this metabolite 
were higher in male subjects in our cohort. Bile acids could a$ect BP by a$ecting 
water and electrolyte homeostasis.58 Bile acids could stimulate sodium retention 
through the epithelial sodium channel in the distal tubules, and water retention 
through upregulation of aquaporin 2 by the receptor TGR5 and nuclear receptor 
FXR.58 Although other studies have found associations between gut microbiota 
and deoxycholate, another secondary bile acid, we could not predict levels of gly-
cochenodeoxcyholate-3-sulfate from gut microbiota composition.50 

Our study has several limitations. Our metabolomics data was semi-quantitative 
and as such does not provide concentrations of the detected metabolites, only rel-
ative abundances that enable inter-sample comparisons. Moreover, our analyses 
were cross-sectional. !erefore, we cannot draw conclusions about causality and 
cannot assess whether the best predicting metabolites re&ect pathological or pro-
tective mechanisms. Future studies are needed focusing on speci"c metabolites 
to further validate our "ndings and to determine exact plasma concentrations 
and underlying mechanisms. For this study, we did not include menopausal sta-
tus, and therefore, we could not compare the di$erences between premenopausal 
and postmenopausal women, whereas hormonal changes over lifetime are likely 
to a$ect metabolomic pro"les. A relatively high number of participants in our 
study sample had mild albuminuria, which might have a$ected the metabolomic 
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pro"les, despite the preserved glomerular "ltration rate of the included partici-
pants. However, we adjusted for presence of albuminuria in our linear regression 
analyses. Since diabetes diagnoses could have in&uenced our results, we ran a 
separate sensitivity analysis without subjects with diabetes, that yielded compa-
rable results. Strengths of this study include the ethnic diversity of the cohort and 
the extensive phenotyping of this population including clinical data, metabolom-
ics and gut microbiome data. Although plasma metabolites have been associated 
with BP in other studies, we are the "rst to report that signi"cant sex di$erences 
exist in the association with BP using untargeted metabolomics and a machine 
learning approach.

While hypertension guidelines do not distinguish between men and women, there 
is accumulating evidence showing that there are sex di$erences in in&ammatory 
patterns underlying hypertension and physiology of blood pressure regulation. 
Our analyses underline that plasma metabolites could have sex-dependent e$ects 
on blood pressure and are o#en only associated with blood pressure in either 
men or women. Future studies on the role of plasma metabolites in hypertension 
should therefore consider sex strati"cation, whether that is in fundamental stud-
ies, animal studies or clinical trials.
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Supplements

Supplement 1: Untargeted metabolomics methods
Methods as provided by Metabolon, Morrisville, NC, USA

Sample shipment and processing

All samples were kept at -80°C until processed. Samples were prepared using the 
automated MicroLab STAR® system (Hamilton Company).  Several recovery stan-
dards were added prior to the "rst step in the extraction process for QC purposes.  
To remove protein, dissociate small molecules bound to protein or trapped in 
the precipitated protein matrix, and to recover chemically diverse metabolites, 
proteins were precipitated with methanol under vigorous shaking for 2 min (Glen 
Mills GenoGrinder 2000) followed by centrifugation.  !e resulting extract was 
divided into "ve fractions: two for analysis by two separate reverse phase (RP)/
UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one 
for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by 
HILIC/UPLC-MS/MS with negative ion mode ESI, and one sample was reserved 
for backup. Samples were placed brie&y on a Zymark TurboVap® evaporator to 
remove the solvent.  !e sample extracts were stored in nitrogen overnight before 
preparation for analysis.

QA/QC

Several types of controls were analyzed together with the study plasma samples: 
a pooled matrix sample generated by taking a small volume of each experimental 
sample served as a technical replicate throughout the data set; extracted water 
samples served as process blanks; and a cocktail of QC standards that were care-
fully chosen not to interfere with the measurement of endogenous compounds 
were spiked into every analyzed sample, allowed instrument performance moni-
toring and aided chromatographic alignment. Table 1 and Table 2 describe these 
QC samples and standards.

Instrument variability was determined by calculating the median rela-
tive standard deviation (RSD) for the standards that were added to each sample 
prior to injection into the mass spectrometers.  Overall process variability was 
determined by calculating the median RSD for all endogenous metabolites (i.e., 
non-instrument standards) present in 100% of the pooled matrix samples. Ex-
perimental samples were randomized across the platform run with QC samples 
spaced evenly among the injections, as outlined in Figure S1.



Chapter 6196

Table 1:  Description of Metabolon QC Samples

Type Description Purpose

MTRX
Large pool of human plasma main-
tained by Metabolon that has been 
characterized extensively.

Assure that all aspects of the 
Metabolon process are operating 
within speci"cations.

CMTRX Pool created by taking a small ali-
quot from every customer sample.

Assess the e$ect of a non-plasma 
matrix on the Metabolon process and 
distinguish biological variability from 
process variability.

PRCS Aliquot of ultra-pure water
Process Blank used to assess the con-
tribution to compound signals from 
the process.

SOLV Aliquot of solvents used in 
extraction.

Solvent Blank used to segregate con-
tamination sources in the extraction.

Table 2:  Metabolon QC Standards

Type Description Purpose

RS Recovery Standard Assess variability and verify performance of 
extraction and instrumentation.

IS Internal Standard Assess variability and performance of 
instrument.

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy 
(UPLC-MS/MS)

All UPLC-MS/MS methods used a Waters ACQUITY UPLC and a !ermo Sci-
enti"c Q-Exactive high resolution/accurate mass spectrometer interfaced with a 
heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer op-
erated at 35,000 mass resolution. !e sample extract was dried then reconstituted 
in solvents compatible to each of the four methods. Each reconstitution solvent 
contained a series of standards at "xed concentrations to ensure injection and 
chromatographic consistency. One aliquot was analyzed using acidic positive ion 
conditions, chromatographically optimized for more hydrophilic compounds. In 
this method, the extract was gradient eluted from a C18 column (Waters UPLC 
BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% per-
&uoropentanoic acid (PFPA) and 0.1% formic acid (FA).  Another aliquot was 
also analyzed using acidic positive ion conditions, however it was chromato-
graphically optimized for more hydrophobic compounds. In this method, the 



6

197Sex di!erences in metabolomics and BP

A small aliquot of each client sample (colored cylinders) is pooled to create a CMTRX technical repli-
cate sample (multi-colored cylinder), which is then injected periodically throughout the platform run.  
Variability among consistently detected biochemicals can be used to calculate an estimate of overall 
process and platform variability.

 
Figure S1: Preparation of client-speci"c technical replicates

extract was gradient eluted from the same afore mentioned C18 column using 
methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an 
overall higher organic content.  Another aliquot was analyzed using basic negative 
ion optimized conditions using a separate dedicated C18 column.   !e basic ex-
tracts were gradient eluted from the column using methanol and water, however 
with 6.5mM Ammonium Bicarbonate at pH 8. !e fourth aliquot was analyzed 
via negative ionization following elution from a HILIC column (Waters UPLC 
BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of water and ace-
tonitrile with 10mM Ammonium Formate, pH 10.8. !e MS analysis alternated 
between MS and data-dependent MSn scans using dynamic exclusion. !e scan 
range varied slighted between methods but covered 70-1000 m/z.  Raw data "les 
are archived and extracted as described below.

Bioinformatics

!e informatics system consisted of four major components, the Laboratory In-
formation Management System (LIMS), the data extraction and peak-identi"ca-
tion so#ware, data processing tools for QC and compound identi"cation, and a 
collection of information interpretation and visualization tools for use by data an-
alysts.  !e hardware and so#ware foundations for these informatics components 
were the LAN backbone, and a database server running Oracle 10.2.0.1 Enterprise 
Edition.
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Data Extraction and Compound Identi"cation

Raw data was extracted, peak-identi"ed and QC processed using Metabolon’s 
hardware and so#ware.  !ese systems are built on a web-service platform utiliz-
ing Microso#’s .NET technologies, which run on high-performance application 
servers and "ber-channel storage arrays in clusters to provide active failover and 
load-balancing. Compounds were identi"ed by comparison to library entries of 
puri"ed standards or recurrent unknown entities.  Metabolon maintains a library 
based on authenticated standards that contains the retention time/index (RI), 
mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral 
data) on all molecules present in the library. Furthermore, biochemical identi"-
cations are based on three criteria: retention index within a narrow RI window of 
the proposed identi"cation, accurate mass match to the library ±10 ppm, and the 
MS/MS forward and reverse scores between the experimental data and authentic 
standards.  !e MS/MS scores are based on a comparison of the ions present in 
the experimental spectrum to the ions present in the library spectrum. While 
there may be similarities between these molecules based on one of these factors, 
the use of all three data points can be utilized to distinguish and di$erentiate bio-
chemicals. More than 3300 commercially available puri"ed standard compounds 
have been acquired and registered into LIMS for analysis on all platforms for de-
termination of their analytical characteristics. Additional mass spectral entries 
have been created for structurally unnamed biochemicals, which have been iden-
ti"ed by virtue of their recurrent nature (both chromatographic and mass spec-
tral).  !ese compounds have the potential to be identi"ed by future acquisition 
of a matching puri"ed standard or by classical structural analysis.

Curation

A variety of curation procedures were carried out to ensure that a high-quality 
data set was made available for statistical analysis and data interpretation.  !e 
QC and curation processes were designed to ensure accurate and consistent 
identi"cation of true chemical entities, and to remove those representing system 
artifacts, mis-assignments, and background noise.  Metabolon data analysts use 
proprietary visualization and interpretation so#ware to con"rm the consisten-
cy of peak identi"cation among the various samples.  Library matches for each 
compound were checked for each sample and corrected if necessary. Peaks were 
quanti"ed using area-under-the-curve.  
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Metabolite Quanti"cation and Data Normalization

Peaks were quanti"ed using area-under-the-curve. For studies spanning multiple 
days, a data normalization step was performed to correct variation resulting from 
instrument inter-day tuning di$erences.  Essentially, each compound was correct-
ed in run-day blocks by registering the medians to equal one (1.00) and normaliz-
ing each data point proportionately (termed the “block correction”).

Supplement 2: Info!le metabolites
!is excel "le containing a list of metabolites is too large to be printed. !e 
table can be found digitally, through the online publication of the paper:  
https://doi.org/10.1016/j.atherosclerosis.2023.05.016. 

https://doi.org/10.1016/j.atherosclerosis.2023.05.016
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Supplement 3: Preprocessing of raw sequencing data
Raw sequencing reads were processed using USEARCH (v11.0.667).1 Paired-end 
reads were merged allowing a maximum of 30 di$erences in the overlapping region 
and a maximum of 1 expected error in the merged contig. Expected error-based 
read quality "ltering was performed as described in Edgar et al.2 Remaining con-
tigs were dereplicated and unique sequences were denoised using the UNOISE3 
algorithm to infer Amplicon Sequence Variants (ASVs).2 All merged reads were 
subsequently mapped against the resulting ASVs to produce a count table. ASVs 
not matching expected amplicon length were removed (i.e. ASV sequences longer 
than 260 bp or shorter than 250 bp). Taxonomy was assigned with the ‘assignTax-
onomy’ function from the ‘DADA2’ R package (v 1.12.1) using the SILVA (v. 132) 
reference database.3,4 ASVs sequences were then aligned using MAFFT (v.7.427) 
using the auto settings.5 A phylogenetic tree was constructed from the resulting 
multiple sequence alignment with FastTree (v.2.1.11 Double Precision) using a 
generalized time-reversible model.6 !e ASV table, taxonomy, and tree were in-
tegrated using the ‘phyloseq’ R package (v.1.28.0). !e ASV table was rare"ed to 
14932 counts per sample.7 Of 6056 sequenced samples, 24 had insu%cient counts 
(<5000 counts per sample) and were excluded at the rarefying stage. 

1.  Edgar RC. Search and clustering orders of magnitude faster than BLAST. 
Bioinformatics (2010) doi:10.1093/bioinformatics/btq461

2.  Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS 
amplicon sequencing. bioRxiv (2016). doi:10.1101/081257

3.  Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: 
High-resolution sample inference from Illumina amplicon data. Nat Methods (2016) 
doi:10.1038/nmeth.3869

4.  Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 
!e SILVA ribosomal RNA gene database project: Improved data processing and 
web-based tools. Nucleic Acids Res (2013) doi:10.1093/nar/gks1219

5.  Katoh K, Standley DM. MAFFT multiple sequence alignment so#ware version 
7: Improvements in performance and usability. Mol Biol Evol (2013) doi:10.1093/
molbev/mst010

6.  Price MN, Dehal PS, Arkin AP. FastTree 2 - Approximately maximum-likelihood 
trees for large alignments. PLoS ONE (2010) doi:10.1371/journal.pone.0009490

7.  McMurdie PJ, Holmes S. Phyloseq: An R Package for Reproducible Interactive 
Analysis and Graphics of Microbiome Census Data. PLoS ONE (2013) doi:10.1371/
journal.pone.0061217
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Supplement 4: Machine learning design
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Women Men

Women Men

Women Men

Women Men

Supplement 5: Permuted models
!e results of the permuted machine learning models are presented below. !ese 
have an identical design as the models that used actual data, except that the data 
was permuted prior to each iteration. !ese are expected to have a mean explained 
variance around 0%, that is, if they do not over"t.
Systolic blood pressure

Diastolic blood pressure

Heart rate varability (SDNN)

Baroreceptor sensitivity (xBRS)
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Supplement 6: Population characteristics of subset with available 
xBRS and HRV data 

Overall Women Men p
N 139 64 75
Age, years 52.46±10.34 50.77 ±11.04 53.91±9.54 0.074

Age ≤50 years 58 (41.7) 35 (54.7) 23 ( 30.7) 0.007
Ethnicity 0.007

Dutch 25 (18.0) 7 (10.9) 18 ( 24.0)
South-Asian 
Surinamese 39 (28.1) 13 (20.3) 26 ( 34.7)

African 
Surinamese 40 (28.8) 26 (40.6) 14 ( 18.7)

Ghanaian 35 (25.2) 18 (28.1) 17 ( 22.7)
BMI, kg/m2 28.08±4.94 29.06±6.06 27.23±3.56 0.029

Current smoking 26 (18.7) 8 (12.5) 18 ( 24.0) 0.130

Diabetes 17 (12.2) 5 ( 7.8) 12 ( 16.0) 0.227

Hypertension 85 (61.2) 33 (51.6) 52 ( 69.3) 0.049
Antihypertensive 
medication 43 (30.9) 16 (25.0) 27 ( 36.0) 0.225

Systolic BP, mmHg 137.26±20.95 132.99±20.67 140.89±20.64 0.026

Diastolic BP, mmHg 83.26±11.37 79.24±10.44 86.69±11.06 <0.001

xBRS, ms/mmHg 11.80±6.57 13.55±7.53 10.30±5.23 0.003

HRV, SDNN 0.05±0.02 0.05±0.02 0.05±0.02 0.358
eGFR, ml/
min/1.73m2 93.81±19.90 99.37±18.82 89.06±19.68 0.002

Albuminuria (stage 
A2 KDIGO) 69 (49.6) 31 (48.4) 38 ( 50.7) 0.927

Data is presented as mean±SD or n (%). BMI = body mass index, BP = blood pressure, eGFR 
= estimated glomerular $ltration rate (CKD-EPI), HRV = heart rate variability, xBRS = 
cross-correlation baroreceptor sensitivity.
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Di%erences in metabolite concentrations (log10 scale) between men and women. Metabolite levels were 
log10-transformed since some of these metabolites had a nonnormal distribution. All di%erences be-
tween men and women were very signi$cant, **** = p-value<1*10-15 using Mann-Whitney U tests.

Supplement 7: Di$erences between men and women in highest 
ranked metabolites in the prediction for sex 
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Machine learning models: explained variance

Explained variance in % per iteration is shown, with a total of 200 iterations per model. Each model 
is annotated with the median explained variance of the machine learning model (XGBoost algorithm).

Supplement 8: Explained variance of hemodynamic parameters 
by metabolites
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Machine learning models: explained variance

Explained variance in % per iteration is shown, with a total of 200 iterations per model. Each model 
is annotated with the median explained variance of the machine learning model (XGBoost algorithm).

Supplement 9: Machine learning models for old and young 
subjects, in men and women
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Machine learning models: explained variance

Explained variance in % per iteration is shown, with a total of 200 iterations per model. Each model 
is annotated with the median explained variance of the machine learning model (XGBoost algorithm).

Supplement 10: Sensitivity analysis in subjects without diabetes
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Linear regression models for SDNN and xBRS: log change in outcome per SD increase in metabolite 
levels with 95% con$dence intervals, adjusted for age, body mass index (BMI), renal function, diabetes 
and albuminuria. Le" plot shows the best predictors for SDNN (as measure of heart rate variability) 
in men; right plot shows the best predicting metabolites for xBRS in men. Bold font indicates that me-
tabolites had a signi$cant interaction (p<0.1) with sex in the adjusted model. SDNN and xBRS were 
log10-transformed for this analysis.

Supplement 11: Linear regression models HRV (SDNN) and xBRS
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Linear regression models for associations between plasma metabolites and best predicting microbes 
strati$ed for sex: estimates per log10 increase in abundance of microbe with 95% con$dence intervals, 
adjusted for age, body mass index (BMI), renal function, diabetes, albuminuria and smoking. Bold 
font indicates that metabolites had a signi$cant interaction (p<0.05) with sex in the unstrati$ed model.

Supplement 12: Associations between microbiota and metabolite 
levels strati!ed by sex
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Abstract 

Introduction: Weight loss is associated with higher mortality and progression 
of cognitive decline, but its associations with MRI changes related to AD are 
unknown.

Methods: We included 412 patients from the NUDAD project, comprising 129 
with AD dementia, 107 with mild cognitive impairment (MCI) and 176 controls. 
Associations between nutritional status and MRI measures were analyzed using 
linear regression, adjusted for age, sex, education, cognitive functioning, and 
cardiovascular risk factors.

Results: Lower body mass index, fat mass and fat free mass index were associated 
with higher medial temporal atrophy (MTA) scores. Lower body mass index, 
fat mass and waist circumference were associated with more microbleeds. 
Strati"cation by diagnosis showed that the observed associations with microbleeds 
were only signi"cant in MCI. 

Discussion: Lower indicators of nutritional status were associated with more MTA 
and microbleeds, with largest e$ect sizes in MCI.



Chapter 7214

Background
Changing nutritional status, including weight loss, is already prevalent in early 
(pre-dementia) stages of Alzheimer’s disease (AD).1,2 A suboptimal nutritional 
status has been associated with higher mortality and progression of cognitive 
decline.3-6 However, it is not clear what the relation is between nutritional status 
and the neurodegenerative process implicated in AD.

On MRI, AD is characterized by cerebral atrophy, including global cortical atrophy 
(GCA) and medial temporal atrophy (MTA).7 Particularly MTA is an early marker 
for AD pathology.7 Cerebrovascular damage in AD is characterized by white 
matter hyperintensities (WMH) and microbleeds on MRI.8 !e observation of the 
latter has been linked to underlying cerebral amyloid angiopathy and AD patients 
with microbleeds have been shown to have more abnormal concentrations of 
amyloid-beta in their cerebrospinal &uid.8,9

In clinical populations of AD and mild cognitive impairment (MCI), studies 
have shown con&icting results regarding the association between body mass 
index (BMI) and cerebral atrophy.10-14 !ese con&icting "ndings could be due 
to di$erences in study populations, since in some populations cardiovascular 
risk factors were more prevalent than in others. Alternatively, they could be the 
consequence of the complex relationship between nutritional status and atrophy, 
as most of these former studies only evaluated BMI, but nutritional status refers 
to a broader concept, including parameters such as body composition (i.e. fat 
mass (FM), fat free mass index (FFMI)) and malnutrition as assessed using mini 
nutritional assessment (MNA). In this study, we aimed to investigate associations 
between BMI, FM, FFMI, waist circumference and MNA, as indicators of 
nutritional status and structural brain changes, including measures of brain 
atrophy and cerebrovascular pathology, in a memory clinic population with AD 
dementia, MCI and controls. 



7

215Nutritional status and MRI characteristics

Methods
Study population
NUDAD (Nutrition, the Unrecognized Determinant in Alzheimer’s Disease) is 
a prospective cohort study that aims to investigate nutritional determinants in 
AD dementia and pre-dementia stages, with a clinical follow-up of three years.15 
!e NUDAD cohort is nested within the Amsterdam Dementia Cohort and con-
sists of patients that visited the Alzheimer Center of the Amsterdam UMC bet-
ween September 2015 and August 2017, were diagnosed with AD dementia, MCI 
or subjective cognitive decline (SCD) and had a mini-mental state examination 
(MMSE) score >16.16 Here, we present cross-sectional baseline data of the 412 
NUDAD participants with available MRI scans, including 129 patients with AD, 
107 patients with MCI and 176 individuals with SCD, who served as controls. 
Patients underwent standardized dementia screening, including extensive neuro-
psychological assessment, neurological examination, MRI, lumbar puncture and 
laboratory tests.17 MCI and AD diagnoses were established by consensus in a mul-
tidisciplinary meeting according to the National Institute on Aging-Alzheimer’s 
Association criteria.18,19 As controls, we used subjects with SCD who presented 
with memory complaints but performed normal on all clinical and cognitive exa-

Research in context
1. Systematic review: A PubMed search yielded several articles on the relation between 

body mass index (BMI) and cerebral atrophy.10-14 !ese articles showed con&icting 
results, and only a few of these studies took more in-depth parameters of nutritional 
status into account.

2. Interpretation: In our cohort, lower nutritional parameters were associated with more 
medial temporal atrophy and microbleeds, with largest e$ect sizes in patients with 
mild cognitive impairment. Our results extend previous reports by simultaneously 
evaluating multiple nutritional status parameters in relation to di$erent MRI measures 
of neurodegenerative and vascular pathology in a clinical AD sample covering the 
entire cognitive spectrum from cognitively normal to dementia.

3. Future directions: Our results indicate that worse nutritional status might have a role 
in the development of AD, either as early consequence of underlying pathology or 
as an aggravating factor. !is should be further studied in intervention studies that 
focus on optimizing nutritional status in AD.
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minations, i.e. did not ful"ll criteria for MCI, dementia or psychiatric diagnoses.17 
Informed consent was obtained from all participants and the protocol was ap-
proved by the Ethics Committee of the Amsterdam UMC.

Descriptive characteristics included age, sex, educational levels according 
to the Verhage score (low: 1-3, medium: 4-5, high: 6-7),20 living situation (inde-
pendent alone, independent together or institutionalized), medical history (his-
tory of diabetes mellitus, hypertension, hypercholesterolemia, myocardial infarc-
tion or peripheral artery disease – either self-reported or as described in referral 
letter), smoking status (current, former, never) and alcohol use (in number of 
consumptions per day). In addition, global cognitive functioning was assessed 
using the MMSE (scale 0-30).21 Cardiovascular risk was de"ned as a cumulative 
score that increased with one point for the presence of one of the following varia-
bles: a self-reported history of diabetes mellitus, hypertension, hypercholesterole-
mia, or self-reported medication use for either of these conditions, self-reported 
history of peripheral artery disease or myocardial infarction, or self-reported po-
sitive smoking status (current or former smoking). 

Indicators of nutritional status
From measured body height and body weight, body mass index (BMI, kg/m2) 
was calculated for all patients. Waist circumference, available in 400 patients, was 
measured in standing position with a measuring tape at the smallest part between 
the lowest rib and hip. A#er multifrequency bio-electrical impedance analysis (50 
kHz, Bodystat Quadscan 4000), FFM (kg) was calculated using the Kyle formula, 
and FM (kg) was calculated by subtracting FFM from total body weight.22 Subse-
quently, FFM was divided by squared body height to calculate FFM index (FFMI, 
kg/m2). Data on FM and FFMI were available for 346 patients. Nutritional status 
was evaluated in 267 patients using the validated MNA that has a maximum score 
of 30 points with higher scores indicating a better nutritional status.23,24 If neces-
sary, study partners assisted patients in completing this questionnaire. Patients 
scoring lower than 23.5 points are generally regarded as being at risk of malnutri-
tion and lower than 17 points as malnourished. For the analyses, a modi"ed MNA 
score was used with a maximum score of 28, in which the question on neuropsy-
chological functioning was omitted to avoid that putative group di$erences in 
MNA were driven by diagnosis.25 
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MRI visual scores
MRI scans were performed on a 3.0T scanner. !e MRI protocol included 
T1-weighted, T2-weighted, &uid-attenuated inversion recovery (FLAIR) and 
gradient echo T2*-weighted images. A trained neuroradiologist evaluated all 
scans using visual rating scales. MTA was rated on coronal reconstructions of 
T1-weighted images on a 5-point rating scale (scores 0-4) that has been previously 
described by Scheltens et al.26 MTA was rated on both sides, perpendicular to the 
long axis of the hippocampus. For the analyses, for each patient an average MTA 
score was calculated from le# and right scores. GCA was quanti"ed on transverse 
FLAIR images using a 4-point rating scale (scores 0-3) that has been previously 
described by Pasquier et al.27 WMHs were assessed on the same sequences using 
the 4-point Fazekas scale (scores 0-3).28 Microbleeds were de"ned as small (up to 
10 mm) round hypointense lesions on T2*-weighted MRI.29 Microbleeds counts 
were categorized as follows: no microbleeds, 1 microbleed, 2-4 microbleeds and 
≥5 microbleeds.

Amyloid status
Amyloid status determined by either positive emission tomography (PET) or ce-
rebrospinal &uid (CSF) was available for 356 patients (PET n=198, CSF n=158). 
Amyloid PET-scans were made a#er injection of a tracer dose of either approxi-
mately 250 MBq ± 20% [18F]&orbetaben (Neuraceq) or approximately 370 MBq

 
Table 1: Population characteristics

Characteristics Categories N Total
N=412

Controls
N=176

MCI
N=107

AD dementia
N=129 p-value

General
Sex Female 412 188 (54.4) 95 (54.0) 67 (62.6) 62 (48.1) 0.082
Age 412 64.6 ± 8.3 60.8 ± 7.6 66.9 ± 7.5‡ 68.0 ± 7.8‡ <0.001

Education level
Low 412 27 (6.6) 9 (5.1) 9 (8.4) 9 (7.0)

0.012Medium 174 (42.2) 59 (33.5) 52 (48.6) 63 (48.8)
High 211 (51.2) 108 (61.4) 46 (43.0) 57 (44.2)

Living situation

Independent, 
with partner 412 310 (75.2) 129 (72.9) 85 (79.4) 96 (74.4)

0.514Independent, 
alone 100 (24.3) 47 (27.1) 21 (19.6) 32 (24.8)

Nursing home 2 (0.5) 0 (0.0) 1 (0.9) 1 (0.8)
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Characteristics Categories N Total
N=412

Controls
N=176

MCI
N=107

AD dementia
N=129 p-value

MMSE 412 27 [24-29] 29 [27-29] 27 [25-28]‡ 24 [21-26]‡§ <0.001†

Amyloid status Positive 356 187 (52.5) 34 (23.4) 50 (51.0) 103 (91.2) <0.001

Cardiovascular risk factors

Smoking status

Smoker 412 55 (13.3) 22 (12.5) 16 (15.0) 17 (13.2)

0.938Former 
smoker 154 (37.4) 65 (36.9) 42 (39.3) 47 (36.4)

Never 203 (49.3) 89 (50.6) 49 (45.8) 65 (50.4)
Alcohol use per 
day 412 1.0 ± 1.3 1.0 ± 1.3 1.1 ± 1.3 0.9 ± 1.2 0.553†

Hypertension 412 103 (25.0) 40 (22.7) 31 (29.0) 32 (24.8) 0.500

Hypercholestero-
lemia 412 52 (12.6) 17 (9.7) 14 (13.1) 21 (16.3) 0.225

Diabetes mellitus 412 38 (9.2) 13 (7.4) 17 (15.9) 8 (6.2) 0.020

Myocardial 
infarction 412 12 (2.9) 3 (1.7) 5 (4.7) 4 (3.1) 0.350

Peripheral artery 
disease 412 2 (0.5) 2 (1.1) 0 (0.0) 0 (0.0) 0.260

Indicators of nutritional status
BMI 412 25.8 ± 4.1 26.6 ± 4.7 25.3 ± 3.5‡ 25.0 ± 3.7‡ 0.001
Waist circumfe-
rence 400 91.3 ± 

12.5 92.6 ± 13.5 91.7 ± 11.7 89.1 ± 11.5‡ 0.054

Fat mass 346 25.8 ± 8.2 27.0 ± 8.3 25.3 ± 7.8 24.3 ± 8.1‡ 0.026

Fat free mass 346 52.9 ± 
10.5 53.6 ± 11.5 53.4 ± 9.5 51.5 ± 9.8 0.256

Fat free mass 
index 346 17.3 ± 2.4 17.5 ± 2.6 17.2 ± 2.2 17.1 ± 2.1 0.282

MNA-modi%ed 
score 267 25.0 [23.5-

25.5]
25.0 [23.5-
25.5]

25.0 [23.0-
26.0]

25.0 [23.0-
26.0] 0.052†

MRI markers

MTA 412 0.90 ± 
0.89 0.36 ± 0.51 1.07 ± 0.89‡ 1.48 ± 0.86‡§ <0.001†

GCA 412 0.66 ± 
0.68 0.31 ± 0.50 0.83 ± 0.69‡ 0.98 ± 0.67‡ <0.001†

WMH 411 0.96 ± 
0.81 0.69 ± 0.70 1.23 ± 0.89‡ 1.12 ± 0.76‡ <0.001†

Microbleeds (≥1) 403 79 (19.6) 24 (13.9) 30 (28.3) 25 (20.2) 0.013
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Table on the le": Data is presented as mean ± SD, n (%), or median [interquartile range]. Di%erences 
were tested with one-way ANOVA or Kruskal Wallis tests for continuous variables and chi-square 
tests for categorical variables. *=p-value < 0.05; †=Kruskal-Wallis test; ‡=signi$cantly di%erent from 
controls upon post-hoc; §=signi$cantly di%erent from MCI upon post-hoc. GDS = Geriatric Depression 
Scale, MMSE = Mini Mental State Examination, BMI = body mass index, MNA = Mini Nutritional 
Assessment, MTA = medial temporal atrophy, GCA = global cortical atrophy, WMH = white matter 
hyperintensities.

[18F]&orbetapir (Amyvid). Images were assessed for amyloid positivity by an ex-
perienced nuclear medicine physician.30,31 CSF was obtained by lumbar puncture 
using a 25-gauge needle and collected in 10 ml polypropylene tubes (Sarstedt). 
Amyloid-β1-42 (Aβ42) concentrations were determined with sandwich ELISAs (Fu-
jirebio).32 Patients were classi"ed as having a positive amyloid status, indicative 
for AD pathology, if they had a either positive amyloid PET scan,30 or abnormal 
cerebrospinal &uid (CSF) biomarkers, de"ned as Aβ42 dri# corrected values lower 
than 813 pg/ml.33 In total, 187 (52%) patients were classi"ed as amyloid positive.

Statistical analysis
Di$erences in descriptive variables, nutritional status parameters and MRI scores 
between diagnosis groups were tested using analysis of variance or Kruskal-Wallis 
tests for continuous variables and chi-square tests for categorical variables. For 
ease of comparison, nutritional status parameters were transformed into Z-scores. 
Linear regression analysis in the total sample was used to evaluate associations 
between nutritional status parameters and MRI measures in two models: model 1 
was adjusted for age, sex and education (continuous Verhage score); model 2 was 
adjusted for age, sex, education, MMSE and cardiovascular risk composite score. 
Subsequently, we repeated model 2 strati"ed for diagnosis. Lastly, we performed 
a sensitivity analysis for the strati"ed model 2 including amyloid positive patients 
only. Signi"cance level was set at p<0.05 for all analyses. All statistical analyses 
were performed with SPSS version 22.0 for Windows and plots were created with 
RStudio 3.4.2 for Windows using the forestplot package.34 
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Table 2: Associations between nutritional parameters and MRI markers

Determinant Model 1 Model 2 
MTA
BMI -0.12 (-0.20;-0.03)* -0.12 (-0.21;-0.03)* 
FM -0.11 (-0.20;-0.01)* -0.11 (-0.20;-0.02)* 
FFMI -0.14 (-0.27;-0.02)* -0.18 (-0.30;-0.06)* 
Waist circumference -0.10 (-0.20; 0.00) -0.09 (-0.19; 0.01) 
MNA-mod score -0.04 (-0.15; 0.07) 0.00 (-0.11; 0.10) 
GCA
BMI -0.06 (-0.14; 0.03) -0.06 (-0.15; 0.02) 
FM -0.04 (-0.13; 0.06) -0.04 (-0.14; 0.05) 
FFMI -0.12 (-0.25; 0.00) -0.15 (-0.27;-0.03)* 
Waist circumference -0.01 (-0.11; 0.08) -0.01 (-0.11; 0.09) 
MNA-mod score -0.10 (-0.20; 0.01) -0.06 (-0.17; 0.05) 
WMH
BMI -0.02 (-0.11; 0.07) -0.05 (-0.15; 0.04) 
FM 0.00 (-0.09; 0.10) -0.04 (-0.14; 0.06) 
FFMI -0.05 (-0.18; 0.08) -0.08 (-0.21; 0.05) 
Waist circumference 0.02 (-0.08; 0.12) -0.02 (-0.12; 0.09) 
MNA-mod score -0.05 (-0.16; 0.06) -0.02 (-0.13; 0.09) 
Microbleeds
BMI -0.09 (-0.19; 0.01) -0.11 (-0.21; 0.00)* 
FM -0.12 (-0.22;-0.01)* -0.14 (-0.25;-0.03)* 
FFMI -0.10 (-0.24; 0.04) -0.11 (-0.25; 0.04) 
Waist circumference -0.14 (-0.25;-0.03)* -0.16 (-0.27;-0.04)* 
MNA-mod score -0.09 (-0.21; 0.03) -0.10 (-0.22; 0.03) 

Associations between nutritional parameters and MRI markers are presented as standardized betas 
with con$dence intervals. Model 1 is adjusted for age, sex and education; model 2 is adjusted for age, 
sex, education, MMSE and cardiovascular risk composite score. *= p<0.05.
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Figure 1: Associations strati"ed for diagnosis

Forest plots with associations between nutritional parameters and MRI markers strati$ed for diagnosis, 
presented as standardized betas with con$dence intervals. MTA, medial temporal atrophy; GCA, glob-
al cortical atrophy; WMH, white matter hyperintensities; BMI, body mass index; FM, fat mass; FFMI, 
fat free mass index; MNA, mini nutritional assessment.
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Results
Patients with MCI and AD dementia were older, had received less education and 
had lower MMSE scores than controls (Table 1). !ere were no di$erences in sex 
and living situation. Regarding the nutritional parameters, MCI and AD demen-
tia patients had lower BMI and lower FM than controls. MTA and GCA were 
most severe in patients with AD dementia, followed by patients with MCI and 
controls. WMH and microbleed load were most severe in MCI patients compared 
to controls with AD dementia in between. 

Linear regression analyses (Table 2) showed that lower BMI (β -0.12 (-0.21, 
-0.02), p<0.01, model 2), lower FM (β -0.11 (-0.20, 0.02), p<0.05, model 2) and 
lower FFMI (β -0.18 (-0.30, -0.06), p<0.01, model 2) were associated with higher 
MTA scores in both models. In addition, lower FFMI was associated with more 
GCA (β -0.15 (-0.27, 0.03), p<0.05, model 2). Lower FM (β -0.14 (-0.25, -0.03), 
p<0.05, model 2) and lower waist circumference (β -0.16 (-0.27, -0.04), p<0.01, 
model 2) were associated with more microbleeds in both models. Lower BMI was 
only associated with more microbleeds in model 2 (β -0.11 (-0.21, 0.00), p<0.05). 
!ere were no associations between nutritional parameters and WMH.

Subsequently, we strati"ed model 2 for diagnosis. Although statistical sig-
ni"cance of most associations was lost due to smaller group sizes, e$ect sizes re-
mained similar. Moreover, associations between nutritional parameters, including 
lower BMI (β -0.33 (-0.52, -0.13), p<0.01), FM (β -0.33 (-0.56, -0.11), p<0.01), 
FFMI (β -0.44 (-0.72, -0.16), p<0.01) and waist circumference (β -0.38 (-0.62, 
-0.13), p<0.01) and having more microbleeds were signi"cant in MCI patients. 
!ere were no signi"cant associations in AD dementia and controls. !ere was an 
association between MNA and WMH in controls (β -0.19 (-0.38, 0.00), p<0.05), 
but not in MCI or AD. Associations between lower BMI, FM, FFMI and waist 
circumference and higher MTA were largely similar in direction and e$ect size 
across diagnosis groups, with somewhat larger e$ect sizes in patients with MCI.

Finally, we performed a sensitivity analysis for model 2 in the subgroup 
of 187 patients with positive amyloid status, with a mean age of 66.5±7.6 years, 
102 (51.3%) females, 54 (27%) patients with MCI, 104 (52%) patients with AD 
dementia and 41 (21%) controls (Table 3). Associations with MTA and GCA be-
came stronger than in the total group. !ere were no associations between nutri-
tional parameters and WMH or microbleeds. A#er strati"cation for diagnosis in 
amyloid positive patients (Figure 2), e$ect sizes of MTA with nutritional parame-
ters were largest in controls on visual inspection, while e$ect sizes of WMH and 
microbleeds with these parameters were largest in MCI.
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Table 3: Sensitivity analysis in amyloid positive patients
Determinant Model 1 Model 2 

MTA
BMI -0.18 (-0.31, -0.05)* -0.18 (-0.31, -0.05)* 
FM -0.15 (-0.30, -0.01)* -0.16 (-0.31, -0.02)* 
FFMI -0.18 (-0.36, 0.01) -0.23 (-0.41, -0.06)* 
Waist circumference -0.15 (-0.31, 0.00)* -0.15 (-0.30, 0.00) 
MNA-mod score 0.02 (-0.14, 0.19) 0.06 (-0.10, 0.21) 
GCA
BMI -0.11 (-0.25, 0.03) -0.12 (-0.26, 0.02) 
FM -0.06 (-0.22, 0.09) -0.08 (-0.24, 0.08) 
FFMI -0.23 (-0.42, -0.03)* -0.27 (-0.46, -0.08)* 
Waist circumference -0.06 (-0.22, 0.10) -0.07 (-0.23, 0.09) 
MNA-mod score -0.11 (-0.28, 0.06) -0.09 (-0.26, 0.08) 
WMH
BMI -0.06 (-0.20, 0.08) -0.09 (-0.23, 0.06) 
FM -0.03 (-0.19, 0.12) -0.08 (-0.24, 0.08) 
FFMI -0.10 (-0.30, 0.09) -0.12 (-0.32, 0.07) 
Waist circumference 0.01 (-0.15, 0.17) -0.02 (-0.18, 0.14) 
MNA-mod score 0.13 (-0.03, 0.30) 0.14 (-0.03, 0.30) 
Microbleeds
BMI 0.02 (-0.13, 0.17) 0.03 (-0.12, 0.19) 
FM -0.04 (-0.21, 0.12) -0.03 (-0.20, 0.14) 
FFMI 0.09 (-0.12, 0.29) 0.12 (-0.08, 0.33) 
Waist circumference -0.09 (-0.26, 0.08) -0.08 (-0.26, 0.09) 
MNA-mod score -0.01 (-0.19, 0.17) -0.02 (-0.20, 0.16) 

Associations between nutritional parameters and MRI markers in amyloid positive patients are pre-
sented as standardized betas with con$dence intervals. Model 1 was adjusted for age, sex and educa-
tion; model 2 was adjusted for age, sex, education, MMSE and cardiovascular risk composite score. *= 
p<0.05.
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Discussion
!e main "nding of this study is that lower parameters of nutritional status, in-
cluding lower BMI, FM and FFMI, were associated with more severe MTA and 
more microbleeds. E$ect sizes were largest in patients with MCI, although for the 
associations with MTA signi"cance was lost. Our results extend previous reports 
by simultaneously evaluating multiple parameters of nutritional status in relation 
to di$erent MRI measures of neurodegenerative and vascular pathology in a cli-
nical AD sample covering the entire cognitive spectrum of cognitively normal to 
dementia. 

Our "ndings are in line with two former studies in patients with AD dementia and 
controls that described associations between lower BMI and more severe MTA,10 
and between lower FFM and higher GCA.11 By contrast, in two other studies com-
prising AD and MCI patients, higher BMI was associated with lower total brain 
or hippocampal volumes.12,14 However, these studies used a clinical AD diagnosis, 
while in our study AD diagnosis was con"rmed with CSF amyloid in the majority 
of patients. As such, our cohort probably contains more patients with AD patho-
logy than other studies, which provides the possibility to evaluate the association 
between nutritional status and Alzheimer-related disease processes. In line with 
this notion, of the four MRI markers in our analyses, MTA, the most AD speci"c 
MRI marker, showed strongest associations in the amyloid positive subgroup. A 
former study in a geriatric outpatient population described associations between 
malnutrition, as assessed with MNA, and WMH, but not with MTA.25 !is discre-
pancy could be due to di$erence in population, since the former study evaluated a 
more heterogeneous geriatric population, while our study focused on the clinical 
spectrum of AD. In line with this notion, we found an association between MNA 
and WMH in controls only.

In addition, we observed that lower FM and waist circumference were as-
sociated with more microbleeds, especially in MCI. Microbleeds are more pre-
valent in MCI and AD dementia patients and have been related to Alzheimer 
pathology.8,9  In the sensitivity analysis with amyloid positive MCI patients, the 
association with waist circumference remained intact, providing further support 
for the notion that the relationship between nutritional status and microbleeds is 
AD speci"c. 
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Forest plots with associations between nutritional parameters and MRI markers in amyloid positive 
patients (N=187), strati$ed for diagnosis, presented as standardized betas with con$dence intervals. 
MTA, medial temporal atrophy; GCA, global cortical atrophy; WMH, white matter hyperintensities; 
BMI, body mass index; FM, fat mass; FFMI, fat free mass index; MNA, mini nutritional assessment.

Figure 2: Associations strati"ed for diagnosis in amyloid positive patients 
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!is study has several limitations. Firstly, the cross-sectional nature hampers cau-
sal interpretation of our "ndings. Longitudinal studies with repeated imaging and 
data on for instance body weight history are needed to assess if patients with wor-
se nutritional status indeed develop more AD-speci"c structural brain changes. 
Secondly, we used visual MRI scores to quantify brain atrophy and white matter 
hyperintensities rather than volumetric measurements. Although perhaps some-
what less precise, visual MRI ratings for cerebral atrophy and WMH have nonet-
heless been shown to be as valid and reliable as volumetric measurements.35,36 
Moreover, these measures have clinical applicability, as they are fairly easy to im-
plement in clinical practice. Strengths of this study include the relatively large cli-
nical cohort that underwent standardized work-up, availability of AD biomarkers 
including PET scans and CSF. Diagnoses were made carefully, and although we 
can never rule out misdiagnosis, widely accepted diagnostic criteria were used. 
In addition, we used several parameters of nutritional status, including BMI, FM, 
FFMI, waist circumference and MNA. Of note, average BMI of the study popu-
lation could be considered as overweight. Nonetheless, within this sample of pa-
tients in the earliest stages of AD, we "nd that lower nutritional parameters were 
associated with more MTA and microbleeds. !is is in line with the notion that 
the process of changing nutritional status in AD is a continuous, longer trajectory 
and that in fact many patients may come from obesity in midlife.37

!e altered nutritional status in AD could be caused by elevated energy expen-
diture, lower intake or malabsorption of nutrients.38 A mechanism that could 
explain the associations between lower indicators of nutritional status and MRI 
measures of AD pathology is a lower availability of important nutrients for main-
tenance and repair of brain tissue, such as proteins and fat. In addition, lower le-
vels of speci"c nutrients required for phospholipid synthesis could result in more 
synapse loss, ultimately leading to more atrophy. In line with this hypothesis, a 
recent meta-analysis showed that patients with AD have lower CSF levels of the-
se phospholipid precursors and cofactors such as docosahexaenoic acid (DHA), 
choline-containing lipid, folate, vitamin B12, vitamin C and vitamin E.39

Alternatively, we cannot rule out reverse causality, in which cerebral atrop-
hy and resulting cognitive decline could have led to lower energy intake, weight 
loss and deteriorating nutritional status. However, the observed associations were 
already present in amyloid positive controls and in patients with MCI. !is sug-
gests that the observed relations between nutritional status and structural brain 
changes are not a mere consequence of cognitive decline but rather a prodrome. 
To further address the issues of underlying mechanisms and causal directionality 
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regarding lower intake versus change in energy expenditure, future studies should 
take dietary intake into account.

!e associations observed in MCI and controls suggest that an impaired 
nutritional status has a role in the development of disease, either as early con-
sequence of the underlying pathology or as an aggravating factor. !is provides 
further evidence for the notion that nutrition could also be a target for secondary 
prevention. !is should be further studied in intervention studies that focus on 
optimizing nutritional status. A recent intervention study, LipiDiDiet, with sup-
plementation that includes precursors and cofactors for phospholipid synthesis, 
has shown a favorable e$ect on hippocampal atrophy and functional decline in 
patients with prodromal AD.40,41 !is underlines the potential bene"t of interve-
ning early in the disease process, within the time window where it can still make a 
di$erence in terms of neurodegeneration. Whether positive results can also be ob-
tained by intervening on the level of macronutrient intake needs to be elucidated.

Concluding, in our memory clinic cohort, worse nutritional status, indicated by 
BMI, FM and FFMI, was associated with more MTA and microbleeds. Our "n-
dings indicate that lower nutritional parameters might have a role in the deve-
lopment of AD, either as early consequence of the underlying pathology or as an 
aggravating factor.
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Abstract
Introduction: Several studies have reported alterations in gut microbiota 
composition of Alzheimer’s disease (AD) patients. However, the observed 
di$erences are not consistent across studies. We aimed to investigate associations 
between gut microbiota composition and AD biomarkers using machine learning 
models in patients with AD dementia, mild cognitive impairment (MCI) and 
subjective cognitive decline (SCD).

Materials and Methods: We included 170 patients from the Amsterdam Dementia 
Cohort, comprising 33 with AD dementia (66±8 years, 46%F, mini-mental state 
examination (MMSE) 21[19-24]), 21 with MCI (64±8 years, 43%F, MMSE 27[25-
29]) and 116 with SCD (62±8 years, 44%F, MMSE 29[28-30]). Fecal samples were 
collected and gut microbiome composition was determined using 16S rRNA 
sequencing. Biomarkers of AD included cerebrospinal &uid (CSF) amyloid-
beta 1-42 (amyloid) and phosphorylated tau (p-tau), and MRI visual scores 
(medial temporal atrophy, global cortical atrophy, white matter hyperintensities). 
Associations between gut microbiota composition and dichotomized AD 
biomarkers were assessed with machine learning classi"cation models. !e two 
models with the highest area under the curve (AUC) were selected for logistic 
regression, to assess associations between the 20 best predicting microbes and the 
outcome measures from these machine learning models while adjusting for age, 
sex, BMI, diabetes, medication use, and MMSE.

Results: !e machine learning prediction for amyloid and p-tau from 
microbiota composition performed best with AUCs of 0.64 and 0.63. Highest 
ranked microbes included several short chain fatty acid (SCFA)-producing 
species. Higher abundance of [Clostridium] leptum and lower abundance of 
[Eubacterium] ventriosum group spp., Lachnospiraceae spp., Marvinbryantia 
spp., Monoglobus spp., [Ruminococcus] torques group spp., Roseburia hominis, 
and Christensenellaceae R-7 spp., was associated with higher odds of amyloid 
positivity. We found associations between lower abundance of Lachnospiraceae 
spp., Lachnoclostridium spp., Roseburia hominis and Bilophila wadsworthia and 
higher odds of positive p-tau status. 

Conclusions: Gut microbiota composition was associated with amyloid and p-tau 
status. We extend on recent studies that observed associations between SCFA levels 
and AD CSF biomarkers by showing that lower abundances of SCFA-producing 
microbes were associated with higher odds of positive amyloid and p-tau status.
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Introduction
Alzheimer’s disease (AD) is the most common cause of dementia, and is charac-
terized by the accumulation of amyloid beta in plaques and the formation of neu-
ro"brillary tangles including hyperphosphorylated tau (p-tau). Another hallmark 
is chronic neuroin&ammation, which is re&ected by activation of microglia and 
increased cytokine production.1 !e gut microbiome has been shown to interact 
with the innate and adaptive immune system, by release of bacterial toxins and 
production of metabolites.2,3 As has been shown in other neurological conditions 
such as multiple sclerosis,4,5 gut microbiota could a$ect neuroin&ammation.

!e gut is populated with trillions of microbiota, including bacteria, vi-
ruses, fungi, archaea and protozoa.6 Collectively, the genomes of these cells are 
referred to as the gut microbiome. !e microbiota composition is a$ected by di-
etary factors, age, sex, body mass index (BMI) and medication use, including an-
tibiotics, metformin, proton pump inhibitors and statins.7 Gut microbiota live in 
symbiosis with the host and are needed for the degradation of macronutrients and 
production of metabolites.8,9 Short chain fatty acids (SCFAs) are key metabolites 
of the gut microbiota, which are produced by fermentation of indigestible dietary 
"bers.10

Animal studies have reported di$erences in gut microbiota composition 
between AD and wild-type mice, including a decrease in SCFA-producing mi-
crobes.11,12 Fecal microbiota transplantation from wild type mice to AD-like ani-
mal models such as APP/PS1 and ADLPAPT mice resulted in a reduction of amy-
loid, suggesting a causal relation between gut microbes and AD.12,13 Colonization 
of Tg2576 mice with Bacteroides exacerbates amyloid depositions, suggesting a 
mechanism for the impact of gut microbiota on AD pathology.14 In addition, an 
intervention with sodium butyrate, an SCFA, in an AD mice model resulted in a 
reduction of AD pathology.15

 In line with these animal studies, "ve human studies observed alterations in 
microbiota composition in patients with AD or mild cognitive impairment (MCI) 
compared to controls, with a lower abundance of SCFA-producing species in pa-
tients with AD.16–20 However, the nature of the speci"c microbiota alterations was 
con&icting across studies, with for instance lower16,19,20 and higher17 abundance of 
Ruminococcaceae spp., and lower17 and higher16,18,19 abundance of the Bacteroidetes 
phylum of MCI or AD patients compared to controls. In addition, former studies 
did not take into account AD pathology as measured with AD biomarkers,17–20 
while studies that did focused on a limited set of microbes for these analyses.16,21 

Hence, we aimed to assess the relation between gut microbiota composi-
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tion, as measured with 16S rRNA sequencing, and biomarkers of AD pathology, 
including CSF biomarkers and MRI measures of vascular burden and neurode-
generation, in a memory clinic population with AD dementia, mild cognitive im-
pairment (MCI) and subjective cognitive decline (SCD).

Methods

Study population
We invited 223 study participants from the Amsterdam Dementia Cohort and 
SCIENCe project, for fecal sample collection. All invited participants were diag-
nosed with AD dementia, MCI or SCD and had mini-mental state examination 
(MMSE) scores higher than 16. Of the invited participants, 175 subjects collected 
samples, and 170 subjects could be included in our analyses (Figure 1), compris-
ing 33 patients with AD, 22 patients with MCI and 120 subjects with SCD.22–24 
All patients underwent comprehensive neuropsychological assessment, neuro-
logical examination, lumbar puncture and MRI as part of a standard dementia 
screening.22 MCI and AD diagnoses were established by consensus in a multi-
disciplinary meeting according to the National Institute on Aging-Alzheimer’s 
Association criteria.25,26 Subjects with SCD presented with memory complaints 
but performed normal on cognitive examinations and did not ful"ll criteria for 
MCI, dementia, psychiatric diagnoses or other neurological diagnoses.22 Patients 
were seen annually for follow-up visits, during which cognitive assessments and 
medical examinations were repeated. Prior to these follow-up visits, patients were 
asked to collect fecal samples. !e study protocol was approved by the Ethics 
Committee of the Amsterdam UMC, and all study participants provided written 
informed consent.

Descriptive characteristics included age, sex, medical history (history of 
hypertension, hypercholesterolemia and diabetes; self-reported or described in 
a referral letter), medication use (antihypertensive medication, glucose lowering 
medication, cholesterol lowering medication, proton pump inhibitors (PPI)), 
smoking status (current smoking yes/no) and alcohol use (in units per day). 
Global cognitive functioning was assessed using the MMSE (scale 0-30).27 

Gut microbiota composition
Patients were sent a fecal collection kit prior to their memory clinic follow-up 
visit. Seven patients who used antibiotics within three months prior to collec-
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tion were not included. Other exclusion criteria were diarrhea in the past week 
or severe gastro-intestinal conditions, including in&ammatory bowel disease. A 
&owchart with the screening and recruiting procedure and reasons for exclusion 
at each stage is presented in Figure 1. !e included patients were asked to store 
the sample in a freezer and to transport the samples to the hospital in a cool-
ing bag. !e 175 samples were shipped to Erasmus Medical Center, Rotterdam, 
the Netherlands, for sequencing. Aliquots of ~300 mg feces were homogenized 
and DNA was isolated using bead-beating and the InviMag Stool DNA kit (In-
vitek Molecular GmbH, Berlin, Germany) on a KingFisher Flex robot (!ermo 
Fisher Scienti"c, Breda, Netherlands). Fecal microbiota composition was deter-
mined by sequencing the V3 and V4 hypervariable regions of the 16S rRNA gene 
on an Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA) using 319F 
(ACTCCTACGGGAGGCAGCAG) and 806R (GGACTACHVGGGTWTCTA-
AT) primers and dual-indexing.28 !e processing of the raw sequencing data is 
described in Supplement 1, which a#er rarefying to 20.000 counts per sample re-
sulted in a dataset with 170 samples and 7894 amplicon sequence variants (ASVs). 
Prior to the machine learning analyses, we "ltered for ASVs that had at least 5 
counts in 30% of the subjects, which resulted in a dataset with 181 ASVs. Of these 
ASVs, taxonomy was available up to species level for 32%, up to genus level for 
88% and up to family level for 99%.

AD biomarkers
CSF was obtained by lumbar puncture using a 25-gauge needle and collected 
in 10 ml polypropylene tubes (Sarstedt). Amyloid-β1-42 (Aβ42) and p-tau con-
centrations were determined with sandwich ELISAs, using Innotest (Fujirebio) 
and Elecsys immunoassays. Patients were classi"ed as having a positive amy-
loid status, indicative for AD pathology, if they had amyloid values lower than 
the platform-dependent cut-o$ (Innotest <813 pg/ml;29,30 Elecsys <1000 pg/ml). 
A positive p-tau status was de"ned as having p-tau values higher than the plat-
form-dependent cut-o$ (Innotest >52 pg/ml; Elecsys >19pg/ml). Because of the 
high correlations between these platforms, Elecsys values were converted to In-
notest values,31 CSF biomarkers were available for 116 patients at a median of 2.4 
[IQR 2.2, 3.2] years before the time of fecal sampling.

MRI scans were performed on a 3.0T scanner and the protocol included 
T1-weighted, T2-weighted, &uid-attenuated inversion recovery (FLAIR) and gra-
dient echo T2*-weighted images. A trained neuroradiologist evaluated all scans 
using visual rating scales. Medial temporal atrophy (MTA) was rated on coro-
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nal reconstructions of T1-weighted images of both sides, perpendicular to the 
long axis of the hippocampus (0-4 scale). MTA was averaged across le# and right 
scores, and was dichotomized with a cut-o$ of ≥1.32,33 Global cortical atrophy 
(GCA) was assessed on transverse FLAIR images and rated using a 4-point scale 
(0-3) and dichotomized (cut-o$ ≥1).33,34 White matter hyperintensities (WMH) 
were assessed on the same sequences using the Fazekas scale for white matter 
hyperintensities (0-3) and dichotomized with a cut-o$ of ≥2.35 Microbleeds were 
de"ned as oval or round hypointense lesions up to 10 mm on a T2*-weighted 
MRI. Microbleeds counts were dichotomized into present or absent.36 MRI results 
were available for 136 patients at a median of 2.1 [IQR 0.5, 2.4] years before the 
time of fecal sampling.

Statistical analysis
Di$erences in descriptive and outcome variables between diagnosis groups were 
tested using analysis of variance for continuous variables with normal distribu-
tions, Kruskal-Wallis tests for continuous variables with non-normal distributions 
and chi-square tests for categorical variables. To compare microbiota composition 
between groups, we calculated alpha diversity indices, including Shannon index, 
richness and Faith’s phylogenetic diversity.37,38 In addition, we compared beta di-
versity between groups by testing di$erences in Bray-Curtis distance with a PER-
MANOVA test. We used the rare"ed microbiota data to calculate alpha and beta 
diversity. 

We used machine learning models to predict dichotomized AD biomark-
ers, including amyloid and p-tau status, MTA, GCA, WMH and microbleeds, 
from gut microbiota composition (i.e. the relative abundance of ASVs). Subjects 
were excluded for a particular model if data on that outcome variable were miss-
ing. Microbiota abundance data is compositional data, with skewed, zero-in&ated 
and overdispersed distributions. We used gradient-boosted tree models (XGBoost 
algorithm),39 which is a state-of-the art algorithm that has shown good accura-
cy in comparative microbiota studies.40 To prevent over"tting, we used a nested 
cross-validation design in performing these models (Supplement 2). In each of 
the 200 iterations, the dataset was randomly split into a test set containing 20% of 
the subjects and a training set with the remaining 80%. Within the train set, 5-fold 
cross-validation was performed in order to optimize the model hyperparameters. 
Two random variables were added to the microbiota data in each iteration as a 
benchmark. !e resulting model was evaluated on the test set which yielded an 
area under the receiver-operator curve (AUC) as main model quality metric, and 
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Participants from Amsterdam Dementia 

Cohort assessed for eligibility 

Screened

n = 260

Recruited

n = 223

Data and samples available for analysis:

n = 175

Total samples included in the analysis: 

n = 170

Drop out:

Sample collection failed / too complex: 21

Logistic reasons: 19 

Appointment cancelled: 9

Excluded:

Low number of reads n = 5

Excluded:

Antibiotics use: n = 7

Logistic reasons: n = 23

Other reasons: n = 7

Not screened:

Not reached over the phone: n = 45

No further follow-up visits: n = 11

Flowchart of the number of patients from the Amsterdam Dementia Cohort screened, recruited and 
included in the analysis, including reasons for exclusion at di%erent stages. #e &owchart was designed 
following the ‘Strengthening #e Organization and Reporting of Microbiome Studies’ (STORMS) 
checklist.41

Figure 1: Study #owchart

a ranked list of microbial predictors with their relative importance to the model. 
!ese were recorded for each iteration and were averaged across 200 iterations.

We selected the two machine learning models with the highest AUCs for 
logistic regression, to obtain e$ect sizes for the associations between the 20 high-
est ranked (i.e. highest feature importance) microbes and the dichotomous out-
come of these machine learning models. We ran three models: model 1 adjust-
ed for age, sex and BMI, model 2 with additional adjustment for diabetes, statin 
and proton pump inhibitor (PPI) use and model 3 with additional adjustment for 
MMSE. !e e$ect sizes, reported as odds ratios (OR) per log2-increase in counts 
with 95%-con"dence intervals (95%-CI) were visualized in a forest plot. Spear-
man rank correlation coe%cients were calculated between the top 10 best predict-
ing ASVs found by the two best performing machine learning models and the AD 
biomarkers and were visualized with a correlation heatmap. We used hierarchical 
clustering (Ward’s method) to order the ASVs in this plot and to draw a dendro-
gram. !e correlations with amyloid levels and MMSE scores were inversed for 
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interpretability, since lower levels are indicative for AD pathology in contrast to 
other biomarkers.

Machine learning was implemented in Python (v.3.7.4) using the XGBoost 
(v.0.90), numpy (v.1.16.4), pandas (v.0.25.1), and scikit-learn (v.0.21.2) packages. 
Statistical analyses and visualizations were performed using R (v.3.6.2). All R code 
was made publicly available (https://github.com/barbarahelena/ADC_microbio-
ta). 

Data availability
!e sequencing data presented in this study can be found in an online reposito-
ry, European Nucleotide Archive (ENA) accession number PRJEB49329 (https://
www.ebi.ac.uk/ena/browser/view/PRJEB49329). Clinical data are available upon 
reasonable request at Alzheimer Center Amsterdam, Amsterdam UMC, location 
VUmc in Amsterdam, !e Netherlands.

Results

Population characteristics
!e mean age of the overall study population was 63 years (Table 1), with the AD 
dementia group (66.0±8.0) older than the SCD group (62.0±7.5; p<0.05). Patients 
with AD dementia, MCI and SCD were comparable in terms of sex, BMI, smoking 
status and alcohol use, as well as most cardiovascular risk factors. However, dia-
betes was more prevalent among patients with AD dementia and MCI compared 
to SCD (p<0.05). AD dementia and MCI patients more o#en had abnormal AD 
biomarkers than controls, such as positive amyloid and p-tau status (p<0.001), 
and MTA (p<0.01) and GCA scores ³1 (p<0.05). Distributions of amyloid and 
p-tau CSF levels are presented in Supplement 3. Prevalence of WMH ³2 and mi-
crobleeds tended to be higher in patients with MCI, but this di$erence was not 
signi"cant. !e gut microbiota composition on genus level of the three diagnosis 
groups is shown in Figure 2. When comparing the 20 most abundant genera be-
tween diagnosis groups, only two genera, Subdoligranulum (p<0.05) and Phasco-
larctobacterium (p<0.05), had di$erent abundances between groups. !ere were 
no di$erences in beta diversity (PERMANOVA p=0.223), nor in alpha diversity, 
as measured with Shannon index, richness and Faith’s phylogenetic diversity. 

https://github.com/barbarahelena/ADC_microbiota
https://github.com/barbarahelena/ADC_microbiota
https://www.ebi.ac.uk/ena/browser/view/PRJEB49329
https://www.ebi.ac.uk/ena/browser/view/PRJEB49329
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Table 1: Patient characteristics

N Overall AD 
dementia MCI SCD p

170 33 21 116
Age 170 63.1±7.8 66.0±8.0a 64.1±7.9 62.0±7.5 0.028
Female sex 170 75 (44.1) 15 (45.5) 9 (42.9) 51 (44.0) 0.981
BMI 144 25.3±4.0 25.2±3.7 24.0±3.3 25.6±4.1 0.289
Current smoking 129 12 (9.3) 0 (0.0) 2 (11.8) 10 (10.6) 0.338
Alcohol units/day 130 1.3±1.5 1.2±1.4 1.3±1.3 1.3±1.5 0.908
Hypertension 170 42 (24.7) 12 (36.4) 4 (19.0) 26 (22.4) 0.212
Diabetes 170 15 (8.8) 5 (15.2) 4 (19.0) 6 (5.2) 0.043
Hypercholesterolemia 170 29 (17.1) 5 (15.2) 5 (23.8) 19 (16.4) 0.671
Antihypertensive 
drugs 170 55 (32.4) 13 (39.4) 5 (23.8) 37 (31.9) 0.482

Cholesterol lowering 
drugs 170 48 (28.2) 11 (33.3) 6 (28.6) 31 (26.7) 0.758

Glucose lowering 
drugs 170 12 (7.1) 4 (12.1) 3 (14.3) 5 (4.3) 0.117
Proton pump 
inhibitors 170 29 (17.1) 6 (18.2) 2 (9.5) 21 (18.1) 0.618

MMSE 161 29 [26, 
30]

21 [19, 
24]a,b

27 [25, 
29]a 29 [28, 30] <0.001

ApoE4 allele 166 74 (44.6) 24 (75.0)a 12 (57.1) 38 (33.6) <0.001
amyloid positive 
status 115 49 (42.6) 24 (96.0)a,b 8 (47.1) 17 (23.3) <0.001

amyloid CSF levels 115 884 [646-
1100]

589 [526-
663]a,b

875 [643-
943]a

1034 
[828-1188] <0.001

p-tau positive status 116 71 (61.2) 26 (100.0)a 14 (82.4)a 31 (42.5) <0.001

p-tau CSF levels 116 56 
[45-88]

100 [80-
140]a,b

78 [54-
107]a 49 [34-58] <0.001

MTA≥1 137 41 (29.9) 12 (54.5)a 7 (41.2) 22 (22.4) 0.007
GCA≥1 137 49 (35.8) 11 (50.0) 10 (58.8)a 28 (28.6) 0.018
WMH≥2 137 15 (10.9) 2 (9.1) 3 (17.6) 10 (10.2) 0.633
Microbleeds present 137 24 (17.5) 4 (18.2) 6 (35.3) 14 (14.3) 0.109

Patient characteristics are presented as mean±SD, median [interquartile range] or n (%). Di%erences 
were tested with one-way ANOVA for continuous variables with normal distribution, and Kruskal-
Wallis test for continuous variables with non-normal distribution, or chi-square tests for categorical 
variables. a = signi$cantly di%erent from SCD upon post-hoc testing, b = signi$cantly di%erent from 
MCI upon post-hoc testing. CSF=cerebrospinal &uid, MTA=medial temporal atrophy, GCA=global 
cortical atrophy, WMH=white matter hyperintensities. Signi$cant p-values (p<0.05) are marked in 
bold.
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Figure 2: Descriptive plots gut microbiota
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Associations gut microbiota composition and AD biomarkers
!e machine learning model for the prediction of amyloid status from gut mi-
crobiota composition performed best with an AUC of 0.64±0.10 (Figure 3). !is 
model was closely followed by the p-tau model with an AUC of 0.63±0.09, while 
AUCs of the MRI visual scores ranged between 0.50 and 0.53. Highest ranked 
predictors of the amyloid (CSF) predicting model with all subjects included [Eu-
bacterium] ventriosum group spp., Subdoligranulum spp., and Anaerostipes spp. In 
the model predicting p-tau, highest ranked microbes included Lachnospiraceae 
spp., Lachnoclostridium edouardii and Blautia faecis. !ese microbes are all an-
aerobic bacteria from the Firmicutes phylum and Eubacterieae, Ruminococcace-
ae and Lachnospiraceae families that are known for production of SCFAs. Some 
ASVs, including Subdoligranulum spp., Roseburia hominis and Butyricoccus spp., 
could be found in the top 20 predictors of both the amyloid and p-tau model. !e 
receiver-operating curves (ROCs) of the amyloid and p-tau models with the rel-
ative importance of the highest ranked predictors can be found in Supplement 4.

Logistic regression models showed signi"cant associations with amyloid 
status for 10 of the 20 highest ranked microbial predictors from the amyloid status 
machine learning model (Figure 4A) in model 1 and 2. Two ASVs, Coprococcus 
catus (OR 0.78 (0.63-0.97), p<0.05; model 2) and Oscillospiraceae UCG-005 spp. 
(OR 0.76 (0.59-0.93), p<0.05; model 2), were only associated with amyloid status 
in model 1 and 2. Eight associations remained signi"cant in model 3, adjusting 
for age, sex, BMI, diabetes, proton pump inhibitor and statin use, and MMSE, 
including [Eubacterium] ventriosum group spp. (OR 0.76 (0.62-0.91) per log2-in-
crease in counts, p<0.01), Lachnospiraceae spp. (OR 0.69 (0.49-0.97), p<0.05), 
Marvinbryantia spp. (OR 0.72 (0.53-0.96), p<0.05), Monoglobus spp. (OR 0.75 
(0.57-0.98)), [Ruminococcus] torques group spp. (OR 0.84 (0.71-0.99), p<0.05), 
Roseburia hominis (OR 0.78 (0.63-0.95), p<0.05), and Christensenellaceae R-7 
spp. (OR 0.82 (0.68-0.96), p<0.05), and [Clostridium] leptum spp. (OR 1.55 (1.18-
2.12), p<0.01). Six of the top 20 highest ranked microbial predictors from the 
p-tau status model were associated with p-tau status in the fully adjusted model 3 
(Figure 4B). !ese included two Lachnospiraceae spp. ASVs (OR 0.49 (0.33-0.67), 
p<0.001, and OR 0.72 (0.54-0.94), p<0.05), Lachnospiraceae edouardii (OR 0.62 
(0.41-0.85), p<0.01) and Lachnoclostridium spp. (OR 0.72 (0.54-0.94), p<0.01), 
which all belong to the Lachnospiraceae family. In addition, Roseburia hominis 
(OR 0.81 (0.64-0.99), p<0.05) and Bilophila wadsworthia (OR 0.72 (0.52-0.97), 
p<0.05) were lower abundant in patients with a positive p-tau status.
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Associations of top predicting microbes with other biomarkers
We also calculated Spearman’s correlations between the 10 highest ranked mi-
crobes from the amyloid and p-tau models (19 microbes in total, because of an 
overlap of one ASV) and all AD biomarkers, including amyloid and p-tau lev-
els (Figure 5). Five ASVs correlated with higher amyloid levels (0.27<ρ<0.22), 
while one ASV, [Clostridium] leptum, correlated with lower amyloid levels (ρ 0.29, 
p<0.01). Four ASVs correlated with lower p-tau levels (-0.33<ρ<-0.19). Roseburia 
hominis and Odoribacter splanchicus correlated with both higher amyloid and 
lower p-tau levels. Lachnospiraceae NK4A136 group spp. and Anaerostipes spp. 
correlated with lower GCA visual scores on MRI. In addition, Anaerostipes spp. 
and Odoribacter splanchicus correlated with higher MMSE scores, while [Clostrid-
ium] leptum correlated with lower MMSE scores.

0.64

0.63 0.53
0.53

0.50 0.51

0.00
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0.50

0.75

1.00

amyloid p−tau MTA GCA WMH microbleeds
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Machine learning models: AUCs

Distribution of area under the receiver-operating curves (AUCs) resulting from 200 iterations of the 
machine learning classi$cation models (XGBoost algorithm) for each outcome. #e labels indicate 
the mean AUC over 200 iterations. MTA=medial temporal atrophy, GCA=global cortical atrophy, 
WMH=white matter hyperintensities.

Figure 3: Machine learning models: AUCs
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Spearman’s correlations between 10 highest ranked microbial predictors from the amyloid and p-tau 
machine learning models and continuous AD biomarkers. Hierarchical clustering (Ward’s method) 
was used to order the microbes and draw the dendrogram on the right. Correlations with MMSE and 
amyloid CSF levels are reversed for interpretability (-MMSE and -Amyloid), as lower values of these 
variables are indicative for pathology, in contrast to the other biomarkers. Negative (blue) correlations 
in this heatmap re&ect correlations with less biomarkers indicative for AD pathology. Row (microbe) 
order was determined by hierarchical clustering. * p<0.05, ** p<0.01, *** p<0.001. MMSE=mini-men-
tal state examination, P-tau=phosphorylated tau, MTA=medial temporal atrophy, GCA=global corti-
cal atrophy, WMH=white matter hyperintensities.
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Discussion
Our main "ndings are the associations between gut microbiota composition and 
CSF amyloid and p-tau status. Discriminative value of the models predicting am-
yloid and p-tau status from gut microbiota composition was modest, but none-
theless we provide evidence that several SCFA-producing microbes are altered in 
patients with abnormal CSF amyloid and/or p-tau. We extend on animal studies 
reporting associations between SCFAs and amyloid pathology by showing that 
lower abundance SCFA-producing microbes was associated with lower odds of 
amyloid and p-tau positive status.15,42

Five cross-sectional studies of di$erences in gut microbiota between patients with 
AD and controls found that several microbes were less abundant in AD, includ-
ing Faecalibacterium prausnitzii, Eubacterium, Anaerostipes, Ruminococcus, and 
Roseburia spp, while other microbes, such as Odoribacter splanchicus, Bacteroides, 
Prevotella, and Alistipes spp., were more abundant.16–20 In line with these studies, 
we found that many of the highest ranked predictors for amyloid and p-tau status 
belonged to the Lachnospiraceae family, including Roseburia hominis, [Rumino-
coccus] torques, Lachnoclostridium, Monoglobus and Marvinbryantia spp. In con-
trast to earlier "ndings, higher abundance of Odoribacter splanchicus and Alistipes 
spp. correlated with more normal levels of AD biomarkers (higher amyloid and 
lower p-tau CSF levels) in our analyses, albeit these associations were lost a#er 
adjustment for covariates. 

Two previous studies investigated associations between AD biomarkers and 
a speci"c subset of gut microbes.16,21 One cross-sectional study correlated 13 mi-
crobial genera, that were di$erently abundant between AD patients and controls 
including a few that are SCFA-producing, with amyloid and p-tau levels in 40 pa-
tients. Blautia and Bacteroides spp. were associated with higher levels of biomark-
ers indicative of AD pathology, while SMB53 and cc115 spp. were associated with 
lower AD biomarkers. Of these genera, only Blautia faecis was also among the 
best predictors for p-tau status in our analyses, although this association was not 
signi"cant in the adjusted analyses. !ese di$erent "ndings could be explained 
by the older study population or by their inclusion of very low abundance taxa in 
the statistical analyses. A study that assessed di$erences between amyloid positive 
and negative patients in six microbes measured using qPCR found that Escherich-
ia/Shigella spp. were more abundant while Eubacterium rectale was less abundant 
in amyloid positive patients21 Indeed, several Eubacterium species were among 
the highest ranked predictors for amyloid status in our analyses. We did, howev-
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er, not con"rm the Escherichia/Shigella association, most likely because qPCR is 
more sensitive in "nding changes in low abundant pathogens than 16S rRNA gene 
amplicon sequencing. [Clostridium] leptum, a microbe from the Oscillospiraceae 
family, was the only ASV associated with higher odds of amyloid positive status, 
and also correlated with lower continuous amyloid CSF levels. To our knowledge, 
we are the "rst to report an association between this microbe and AD biomarkers.

Our analyses allowed us to di$erentiate between predictors for amyloid 
and p-tau status. Microbial predictors for amyloid and p-tau status showed some 
overlap, such as Roseburia hominis and Lachnospiraceae spp. We also found dif-
ferences in highest ranked predictors for amyloid compared to p-tau status; mi-
crobial strains from the Eubacterium and Ruminococcus genera were the highest 
ranked predictors for amyloid status, while several Lachnoclostridium spp. were 
among the highest predictors for p-tau status. 

In contrast to our "ndings in CSF amyloid and p-tau, we did not "nd asso-
ciations between microbiota composition and MRI measures including vascular 
markers such as WMH and microbleeds in our machine learning model (AUC 
0.50), perhaps due to the low prevalence of cerebrovascular damage in this young 
study population. !e low prevalence of cerebrovascular damage also makes it 
unlikely that the observed associations with amyloid and p-tau were mediated by 
vascular pathology.

!ere are several hypotheses regarding the mechanisms by which gut microbi-
ota could a$ect AD pathology which involve several metabolites and toxins. Li-
popolysaccharide (LPS) can be found in the outer membrane of gram-negative 
bacteria and has been shown to elicit peripheral in&ammatory responses, a$ect 
the permeability of the blood-brain barrier and induce neuroin&ammation.43,44 In 
contrast, capsular polysaccharide A (PSA) of Bacteroides fragilis species has been 
shown to have anti-in&ammatory e$ects on the peripheral immune system,45 
and to suppress central neuroin&ammation by induction of T-regulatory cells in 
mice.46 However, Bacteroides fragilis was not among the highest ranked predic-
tors for amyloid nor p-tau status in our analyses, nor were other species from the 
gram-negative Bacteroides genus.

!e highest ranked predictors were mostly species from the predominantly 
gram-positive Firmicutes phylum known for SCFA production. SCFAs, including 
acetate, propionate and butyrate, are produced by gut bacteria in fermentation 
processes of otherwise undigestible dietary "bers and have immunomodulatory 
potential.10,47 SCFAs could have indirect e$ects on AD pathology by induction of 
peripheral in&ammation or by altering the integrity of the blood-brain barrier, as 
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shown by a butyrate intervention study in germ-free mice.42 Alternatively, SCFA 
could have direct anti-in&ammatory e$ects on microglia as was shown in an in vi-
tro study.48 In that regard, future studies could focus on associations between fecal 
and plasma SCFA levels and in&ammatory brain markers such as glial "brillary 
acidic protein (GFAP).49 

!ere are several limitations of our study including the cross-sectional de-
sign which warrants caution that observed associations should not be interpreted 
as causal relationships. Moreover, time lags between the biomarker measurements 
and the fecal sampling might have confounded some associations. Although we 
adjusted for relevant confounders such as age, sex, BMI, diabetes and medication 
use, we cannot rule out residual confounding. Dietary factors in particular have 
been shown to a$ect microbiota composition.50 Since AD patients tend to lose 
weight over the course of the disease, it has been suggested that cognitive decline 
could lead to lower energy intake which might also a$ect microbiota composi-
tion.51 However, we have found previously that macronutrient intake was not dif-
ferent between diagnosis groups in this cohort.52 Moreover, associations between 
gut microbiota composition and AD biomarkers remained signi"cant when ad-
justing for cognitive function (MMSE). Of note, higher abundance of SCFA-pro-
ducing microbes is indicative for, but does not necessarily re&ect higher gut or 
plasma SCFA levels. To assess microbial production of SCFAs, metagenomic se-
quencing would be needed, which was not within the scope of the current study.

Strengths of this study include the availability of several AD biomarkers, 
including CSF and MRI data, and the inclusion of patients in di$erent stages of 
the AD disease continuum. Fecal samples were obtained using a standardized 
protocol, participants taking antibiotics were excluded, and microbiota composi-
tion was determined with 16S gene amplicon sequencing, which is a widely used 
sequencing method. Machine learning prediction models enabled us to simulta-
neously include all ASVs as features in order to "nd the best predicting microbes. 
Nested cross-validation ensured robustness of the models and prevented over"t-
ting.

!e putative relation between gut microbiota composition and AD pathology, 
may provide opportunities for future treatment. Di$erent treatment strategies 
based on modulating gut microbiota composition have been investigated in other 
diseases such as in&ammatory bowel disease and diabetes.53–55 Fecal microbiota 
transplantation (FMT) aims to restore gut microbiota composition by adminis-
tering microbiota from healthy donors to diseased subjects through a nasodu-
odenal tube.55 In obese subjects, FMT has been shown to alter brain dopamine 
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transporter binding, thus pointing towards a gut-brain connection.56 Nonethe-
less, FMT is logistically challenging and the e$ects of transplantation fade over 
time.57,58 Another strategy includes the use of prebiotics (o#en "ber supplements) 
aimed to promote the growth of certain microbes, or probiotics, supplements of 
bene"cial strains.59 A meta-analysis showed positive e$ects on cognition of Bi-
$dobacterium and Lactobacillus probiotics in patients with MCI.60 However, ben-
e"cial butyrate-producing species are o#en strictly anaerobic or oxygen sensitive, 
complicating culturing and probiotic production.61 A third strategy is to directly 
target microbial pathways such as SCFA production, by interventions with high 
"ber intake or by administering SCFAs including acetate or sodium butyrate.62,63 

Concluding, we found associations between gut microbiota composition and AD 
pathology in our memory clinic cohort. Lower abundance of SCFA-producing 
microbes was associated with higher odds of AD pathology. SCFAs are known 
to have peripheral immunomodulatory potential, providing a putative target for 
treatment.
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Supplements

Supplement 1: Bioinformatic pipeline
16S rRNA primers were removed from the sequencing reads using seqtk (v.1.3). 
!e reads were subsequently processed using dada2 (v.1.18) as follows. A#er ex-
amining read quality pro"les, 50 bases were trimmed from the 5’ end of the for-
ward reads, and 60 bases from the 5’ of the reverse reads, respectively. !e reads 
were truncated at the "rst base with a Q score lower than 4, then quality "ltered 
using 2 maximum expected error for the forward reads and 4 maximum expected 
errors for the reverse reads, allowing for no ambiguous bases. !e "ltered reads 
were used to learn the error rates and to infer Amplicon Sequence Variants (ASVs) 
separately for the forward and the reverse reads. Forward and reverse ASVs were 
merged allowing no mismatching bases and requiring a minimum overlap of 20 
bases. ASVs shorter than 350 bp, longer than 500 bp, and chimeric ASVs were 
removed. An ASV table was constructed for the remaining ASVs. ASV taxonomy 
was then assigned using the dada2 assignTaxonomy function and the SILVA data-
base (v.138) allowing up to 3 multiple species-level assignments.1,2 !e ASV table 
and taxonomy were integrated using the phyloseq R package (v.1.34.0). !e ASV 
table was rare"ed to 20,000 counts per sample.3 Of 175 sequenced samples, 5 had 
insu%cient counts (<20,000) and were excluded at the rarefaction stage.

1. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). !e 
SILVA ribosomal RNA gene database project: Improved data processing and web-
based tools. Nucleic Acids Res. doi:10.1093/nar/gks1219.

2. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and 
Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina 
amplicon data. Nat. Methods. doi:10.1038/nmeth.3869.

3. McMurdie, P. J., and Holmes, S. (2013). Phyloseq: An R Package for Reproducible 
Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 
doi:10.1371/journal.pone.0061217.
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Schematic overview of the machine learning design.

Supplement 2: Machine learning design
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Distribution of (A) amyloid and (B) p-tau CSF levels per diagnosis group.
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Supplement 4: Machine learning results amyloid and p-tau CSF 
model
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p-tau CSF
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Summary
In this thesis, we explored the role of gut microbiota and its metabolites in two 
public health challenges: hypertension (Part I) and Alzheimer’s disease (Part II).

Part I: Hypertension

In Chapter 2, we examined the relationship between gut microbiota and blood 
pressure across di$erent ethnic groups in the HELIUS cohort. We found that bac-
teria that are known for short chain fatty acid (SCFA) production were associated 
with lower blood pressure. However, when we assessed fecal SCFA levels, we no-
ticed elevated concentrations in individuals with high blood pressure.!e "nd-
ings suggest that gut microbiota and SCFAs may play a role in the development of 
hypertension, either as a causal factor or as a consequence of the condition.

Chapter 3 provides a comprehensive review of the current literature on the role 
of gut microbiota in hypertension and atherosclerosis. It highlights the complex 
interactions between gut microbiota and various physiological systems involved 
in blood pressure regulation and atherosclerosis, including the immune system, 
the renin-angiotensin-aldosterone system, and the autonomous nervous system. 
Mechanisms by which gut microbiota might speci"cally a$ect blood pressure are 
SCFA, lipopolysaccharides and the gut-brain axis. Overall, the existing literature 
suggests that gut microbiota may be a promising target for the prevention and 
treatment of hypertension and atherosclerosis, while challenges ahead include the 
translation of the "ndings to humans.

Chapter 4 investigates the e$ects of oral butyrate, a SCFA, on blood pressure in 
patients with hypertension in a randomized placebo-controlled trial. We found 
that treatment with butyrate for four weeks increased daytime systolic blood pres-
sure compared to placebo. !ese are likely to be direct e$ects of butyrate, since 
oral butyrate only increased plasma butyrate yet no other SCFA levels. Although 
existing intervention studies with multiple SCFA showed their blood pressure 
lowering potential, this study showed that not all SCFA have bene"cial e$ects on 
human hypertension. More mechanistic studies are needed to explain the di$er-
ential e$ects of SCFA in humans.

Chapter 5 explored the associations of plasma metabolites with blood pressure. 
Our machine learning analyses showed that formylmethionine was a top predict-
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ing metabolite for systolic and diastolic blood pressure, and a very consistent pre-
dictor across age, sex and ethnicity. Next, we investigated the in vitro e$ects of 
this metabolite on endothelial cells. We found that formylmethionine induced 
endothelial dysfunction, and speci"cally, that it suppressed eNOS, disrupted the 
endothelial barrier and increased oxidative stress. We hypothesize that formylme-
thionine is a mitochondrial damage-associated molecular pattern (DAMP) that 
has a role in blood pressure regulation.

In Chapter 6, we revisit the metabolomics analyses from chapter 6 through the 
lens of sex di$erences. We found that plasma metabolite pro"les are associated 
with blood pressure and autonomic cardiovascular control in a sex-speci"c man-
ner. Sphingomyelins and conjugated bile acids were more predictive of BP in men, 
while metabolites from acylcarnitine and catecholamine pathways were better 
predictors in women. In addition, we could predict heart rate variability from 
metabolite pro"les in men, but not in women, further underscoring potential sex 
di$erences in blood pressure physiology. Several of the best predicting metabo-
lites were associated with gut microbiota composition. !is could indicate that 
inventions targeted at the gut microbiota might have sex-speci"c e$ects, since 
plasma metabolites derived from the microbiota are di$erently associated with 
blood pressure for men and women. 

In summary, we investigated the role of gut microbiota and plasma metabolites in 
hypertension. First, we found cross-sectional associations of SCFA-producing mi-
crobes, faecal SCFA levels and blood pressure. Next, we con"rmed that butyrate, 
a SCFA, modulated blood pressure with a clinical trial in hypertensive patients. 
However, in contrast to existing human intervention studies on SCFA, butyrate 
had blood pressure increasing e$ects. In our plasma metabolomics analyses, we 
identi"ed a novel metabolite that was associated with higher blood pressure: 
formylmethionine. !is metabolite could be a bacterial product, but is more like-
ly a mitochondrial metabolite that may have a role in blood pressure regulation. 
In the sex-strati"ed analyses of the metabolomics data, we showed that plasma 
metabolites are associated with blood pressure in a sex-speci"c manner. !ese 
analyses resulted in several leads for further mechanistic studies on sex di$erenc-
es in hypertension.
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Part II: Alzheimer’s disease

Chapter 7 examined the association between nutritional status and structural 
brain changes in patients with subjective cognitive decline (SCD), mild cognitive 
impairment (MCI) and Alzheimer’s disease (AD) dementia in the NUDAD co-
hort. In this cross-sectional analysis, we found that lower indicators of nutritional 
status were associated with more atrophy on MRI, speci"cally global cortical at-
rophy and medial temporal atrophy. !e study suggests that poor nutrition may 
contribute to the development and progression of Alzheimer’s disease through 
its e$ects on brain structure, although this needs con"rmation of interventional 
longitudinal studies. !e "ndings highlight the importance of maintaining good 
nutritional status in patients with Alzheimer’s disease.

In Chapter 8, we investigated the relationship between gut microbiota compo-
sition and biomarkers of AD pathology in the NUDAD cohort. We found mod-
est associations between gut microbiota composition and cerebrospinal &uid AD 
biomarkers such as amyloid-beta and tau proteins. Speci"cally, higher abundance 
of several SCFA-producing microbes was associated with lower odds of abnor-
mal CSF amyloid and/or p-tau levels. !is association could be explained by the 
immunomodulatory potential of SCFA as shown by previous in vitro and in vivo 
studies. However, this was a cross-sectional analysis and therefore no conclusions 
on causality should be drawn. Future studies could focus on the relation between 
plasma and faecal SCFA and in&ammatory markers such as glial "brillary acidic 
protein (GFAP) in AD.

In conclusion, the studies of this second part of this thesis shed light on the poten-
tial impact of nutritional status and gut microbiota composition on Alzheimer’s 
disease pathology. Since these associations were subtle, it seems more likely the 
gut microbiome has a disease-modulating rather than a causal role.
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Discussion
!is thesis explored the potential contribution of the gut microbiota and plasma 
metabolome in the context of two major public health concerns: hypertension and 
Alzheimer’s disease. !rough a range of approaches, including population-based 
cohorts, observational studies, clinical trials, and in vitro work, my research un-
covered new perspectives that can guide future investigations in these areas. In 
this discussion, I would like to re&ect on the topics touched upon in this thesis 
and put the "ndings in a broader context.

Re"ections on gut microbiota research
!e "eld of gut microbiome research is rapidly expanding, with numerous studies 
demonstrating changes in the gut microbiota composition in a variety of diseas-
es, including in&ammatory bowel disease, diabetes, depression, and Parkinson’s 
disease.1–4 However, this "eld is also facing challenges such as publication bias, 
which skews literature towards positive "ndings, and a general overabundance of 
publications, which causes single publications to be lost among the multitudes.5 
As the "eld advances, it seems increasingly unlikely that the gut microbiome is 
causally related to all of these diseases. !us, rather than merely demonstrating 
an association between the microbiome and a disease (as we also did in Chapter 
2 and 8), there is a growing emphasis on proving causality, identifying underlying 
mechanisms and capturing (some of) the complexity of the microbiome. 

Interventions on gut microbiota composition are crucial for establishing 
causality. Fecal microbiota transplantation (FMT) has shown promise in the con-
text of several diseases, especially C. di!cile infections.6 However, FMT is nei-
ther a long-term nor a scalable solution for large patient populations, since the 
process of FMT is logistically complex and e$ects might only be e$ective on the 
short term (weeks to months).7 Supplementing speci"c combinations of gut mi-
crobes through probiotics may be a solution, but it requires determining which 
microbiota are bene"cial. !is is a challenge because engra#ment of supplement-
ed bacteria is not o#en measured or reported, and when analyzed, has substan-
tial variation between subjects and studies.8 At the same time, our understanding 
of the metabolic interactions between bacteria is lagging behind, while a better 
insight into these interactions could greatly facilitate targeting interventions. If 
the e$ects of gut microbiota are mediated by certain metabolites, supplementing 
these metabolites (postbiotics) might be su%cient to modify disease outcomes. 
Alternatively, dietary modi"cations to stimulate or lower production of speci"c 
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metabolites could be a strategy to target the metabolic e$ects of the microbiome.
Intuitively, the gut microbiome has a larger e$ect on organs that are in close 

proximity. Hence, in&ammatory bowel syndrome is heavily impacted by the gut 
microbiome, while this is much less the case in neurodegenerative diseases like 
Alzheimer’s disease (AD). !is observation was also supported by the "ndings of 
this thesis, which found only a modest association between gut microbiota com-
position and AD biomarkers. However, even a small impact can be signi"cant for 
conditions such as blood pressure and AD. !e 4.4% of systolic blood pressure 
variance explained by gut microbiota composition, for example, could translate 
to a signi"cant impact on cardiovascular mortality on a population-level in the 
longer term. Similarly, even a small impact on AD is relevant, as there is currently 
no treatment available to slow down the neurodegenerative process.

Beyond the focus of this thesis, though also for the diseases studied here, 
we should acknowledge the complexity of the gut microbiome. !e impact of vi-
ruses and fungi cannot be ignored in this context. A recent publication with data 
obtained from the HELIUS study showed that subjects with metabolic syndrome 
have a distinct gut virome composition.9 Moreover, the gut microbiota has a spa-
tial dimension that is not accurately re&ected in fecal samples, as microbial taxa 
distributions vary along the gastrointestinal tract. Bacterial diversity is, for in-
stance, lowest in the small intestine and increases towards the colon. !is spatial 
gradient could bias microbiota analyses, since the material in fecal samples might 
better re&ect the gut microbiota composition in the distal colon than in the small 
intestine.10 An ingestible collection device designed to collect samples along the 
gastrointestinal tract could provide more insight into the distribution of microbes 
and metabolites.11 Additionally, diurnal &uctuations of the gut microbiome – to 
some extent caused by the diurnal rhythmicity of food intake - might result in 
slight di$erences in composition and function when sampling at di$erent times 
of the day.12 !us, the "eld of microbiome research still had great methodological 
strides to make in order to deepen our understanding.

One prominent recent methodological advance is in sequencing approach-
es. In this thesis, we used 16S ribosomal RNA (rRNA) sequencing of fecal samples 
to determine gut microbiota composition as opposed to shotgun sequencing. 16S 
sequencing targets a speci"c region of the 16S rRNA gene present in bacteria and 
archaea. Many copies of the 16S gene target region are generated through PCR 
ampli"cation and sequenced to identify the bacterial and archaeal taxa present 
in the original sample. However, due to variations in the conserved region of the 
16S gene, primer binding a%nity might di$er for di$erent microbial taxa. Cer-
tain taxa show mismatches in these conserved regions relative to the 16S primer 



Chapter 9268

sequences, thus resulting in their underrepresentation in the sequence data. !is 
can lead to biased estimates of microbial diversity and abundance in the original 
sample.13 Shotgun metagenomics avoids this bias, while also enabling analysis of 
the functional capacities of the microbiome however at signi"cant higher costs. 
Because of the use of 16S rRNA sequencing in this thesis, we cannot be sure that 
the short chain fatty acid (SCFA)-producing microbes discussed here are actual-
ly capable of SCFA production, because we lacked other genetic information on 
these microbes than the 16S gene. In summary, shotgun sequencing, repeated 
sampling and novel sampling methods using ingestible devices could aid in un-
raveling the ecological complexity of the microbiome in health and disease.

Gut microbiota, short chain fatty acids and blood pressure
Hypertension is the most important modi"able risk factor for cardiovascular mor-
bidity and mortality, yet blood pressure control has not signi"cantly improved 
over the last decade on a global scale. Despite several e$ective antihypertensive 
drugs being available, only a minority of hypertensive patients have su%ciently 
controlled blood pressure. To expedite progress in this "eld and improve blood 
pressure control, we need to improve preventive strategies and accessibility of in-
terventions. Targeting the gut microbiota presents an attractive approach that can 
be achieved through dietary modi"cations, prebiotics, or probiotics with limited 
side e$ects. !erefore, we set out to study the e$ects of the microbiota-derived bu-
tyrate with a randomized placebo-controlled clinical trial, in which oral butyrate 
supplementation, surprisingly, increased blood pressure. !is "nding may seem 
contradictory to previous cross-sectional studies, including the HELIUS study 
discussed in this thesis, which reported higher abundance of butyrate-producing 
microbes to be associated with lower blood pressure. However, cross-sectional 
studies cannot establish the direction of the association. !e slightly higher fecal 
butyrate concentrations in subjects with high blood pressure in the cross-section-
al study could be a result of relatively lower absorption rate of butyrate, which 
might be a protective mechanism in this context.

Our current understanding of the pharmacokinetics of butyrate is limit-
ed, particularly regarding its absorption and elimination upon ingestion. While 
colonic absorption predominantly takes place through passive mechanisms, ac-
tive co-transport with hydrogen or sodium ions becomes increasingly important 
along the gastrointestinal tract.14 Once absorbed, butyrate enters the portal and 
then systemic circulation and is likely eliminated through renal excretion.15 How-
ever, the expected increase in plasma levels following oral administration and the 
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half-life of butyrate remain unclear. To elucidate the mechanisms of the systemic 
e$ects of butyrate, it is essential to conduct pharmacokinetic studies. !ese stud-
ies should assess the &ux of butyrate between compartments to take into account 
the endogenous production of butyrate. Unfortunately, securing funding for such 
studies in the medical "eld poses signi"cant challenges, despite their pivotal role 
in improving the success rates of later phase clinical trials. Addressing this fund-
ing gap and recognizing the importance of pharmacokinetic and dose optimiza-
tion research are crucial steps toward enhancing the e$ectiveness and safety of 
medical interventions in later clinical trial phases.

!ere are several other directions that we can explore to investigate the ef-
fects of butyrate in hypertension. Given that other clinical trials have shown that a 
combination of SCFAs can lower blood pressure, we should consider the propor-
tions of di$erent SCFAs in our research. !e next step to uncover the interaction 
of SCFA could be to compare the e$ect of di$erent combinations of SCFAs with in 
vitro experiments. Additionally, the e%cacy of interventions with SCFA-enriched 
prebiotics as reported in previous clinical trials could be improved by omitting 
butyrate from these supplements. Lastly, the ongoing analysis of peripheral blood 
mononuclear cells (PBMC) from patients in the BEAM trial could provide more 
insights on the e$ects of butyrate on the in&ammatory phenotype. 

Overall, the studies on gut microbiota, short chain fatty acids and blood 
pressure in this thesis show that gut microbiota can modulate blood pressure. 
!erefore, one can argue that we should include this as one of the factors in the 
pathophysiology of hypertension, as described by the mosaic theory (Figure 1).

Novel metabolites in hypertension
We have identi"ed a novel metabolite associated with blood pressure in our 
metabolomics analyses: formylmethionine (fMet). Our in vitro study of the e$ects 
of fMet on endothelial cells showed that fMet has pro-in&ammatory e$ects and 
might a$ect mechanisms controlling peripheral vascular resistance, such as the 
production of nitric oxide. Follow-up experiments with vascular smooth muscle 
cells are currently underway to investigate how fMet in&uences the contractile 
pathways of these cells. However, blood pressure regulation is more complex and 
involves di$erent neurohumoral systems. In vivo studies are therefore needed to 
uncover the acute and chronic e$ects of fMet on this interplay, for example in 
spontaneous hypertensive rats. 

In a broader perspective, our "ndings on fMet illustrate that the 
mitochondria of endothelial cells could contribute to hypertension, since fMet 
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is more likely a mitochondrial damage-associated molecular pattern (DAMP) 
rather than a microbial or dietary product. !e role of mitochondrial dysfunction 
in hypertension is however still relatively unexplored.16 Human mitochondria 
likely originated from endocytosis of a proteobacterium by another prokaryotic 
cell in the evolutionary process. As a result, there are many similarities between 
mitochondrial and bacterial protein synthesis.17 Mitochondrial products released 
upon tissue injury are very similar to microbial pathogen-associated molecular 
patterns (PAMPs) resulting from infection. !e release of mitochondrial DAMPs 
by human cells elicits a neutrophil-mediated in&ammatory response through 
formylreceptor-1 and Toll-like receptor 9 – the same receptors that PAMPs use.18 
!is explains why traumatic injury can result in systemic in&ammatory response 
syndrome (SIRS) resembling sepsis. Our metabolomics analyses in the HELIUS 
cohort underscore that these mitochondrial products also contribute to low-
grade systemic in&ammation implicated in hypertension and atherosclerosis 
pathophysiology.19 

Our metabolomics analyses yielded many other blood pressure-predicting 
metabolites, of which I would like to highlight a few. Nitric oxide pathway 
metabolites such as citrulline and arginine were high-ranked predictors of blood 
pressure in younger subjects, while lipid metabolites (conjugated bile acids, 
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acylcarnitines and long chain fatty acids) and carbohydrates (glucose, arabinose) 
were better predictors of blood pressure in older subjects. !is could re&ect the 
di$erences in pathophysiology of hypertension between these groups, as it seems 
that vascular tissue regulation of peripheral resistance is more important in young 
subjects. In contrast, the best predicting metabolites in older HELIUS subjects 
hint to underlying processes of atherosclerosis and (pre-)diabetic comorbidity, 
emphasizing the importance of early prevention strategies.

!e sex-strati"ed analyses showed that catecholamines are better predictors 
of blood pressure in women while sphingomyelins and secondary bile acids were 
higher ranked predictors in men. !e evidence of sex di$erences in autonomic 
nervous system function is limited and needs more scrutiny in order to explain 
why catecholamine products are better blood pressure predictors in women. In 
addition, further research is needed to investigate the sex-speci"c e$ects of bile 
acids and sphingomyelins. Levels of these metabolites are known to be di$erent 
between men and women – in men they are higher for bile acids and lower for 
sphingomyelins– yet it is unclear how these would a$ect blood pressure di$erently. 
It would therefore be interesting to investigate the sex-speci"c e$ects of these 
metabolites on vascular function using in vivo and in vitro models. It is crucial 
to also be aware of sex di$erences in these models: not only regarding the sex of 
animals for in vivo studies, but also in vitro regarding the sex of cell lines and the 
use of estrogenic components in cell culture media.

We also found that phenylalanine was associated with lower heart rate 
variability, but only in men. Other studies found that phenylalanine induces 
cardiac senescence in mice, yet we were the "rst to show a relation of this 
metabolite with autonomous nervous system function in humans. In line with our 
"nding, the phenylalanine-derived phenylacetylglutamine (PAG) has been shown 
to interact with adrenergic receptors.20 Phenylacetylglutamine can be synthesized 
from dietary phenylalanine by gut microbiota, and circulating phenylalanine is 
metabolized by the hepatic enzyme phenylalanine hydroxylase.21 How the relation 
between dietary phenylalanine, the gut microbiota and the liver is di$erent 
between men and women remains to be uncovered. 

Alzheimer’s disease, nutrition and gut microbiota
Alzheimer’s disease is a complex disorder with a high degree of heritability, 
estimated to be between 60% and 80%.22 !e APOE ε4 risk allele is known to 
play an important role in the development of the disease, but recent genome-wide 
association studies have identi"ed numerous other risk genes, including CD33, 
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IL34, and TREM2, which are involved in neuroin&ammation and microglial 
function.23 !ese "ndings highlight the central role of neuroin&ammation in 
Alzheimer’s pathogenesis. 

!e gut microbiome may also play a role in disease progression through its 
immunomodulatory potential.24 Our research has revealed a modest association 
between the gut microbiota and AD pathology biomarkers, suggesting a possible 
contribution to the in&ammatory pro"le that exacerbates the disease. In 2019, 
a study investigating the e$ects of sodium oligomannate (GV-971) on cognitive 
function showed promising results, with the microbiome potentially playing a role 
in mediating these e$ects.25 However, the validity of the methods and "ndings 
has been questioned, highlighting the need for further investigation to uncover 
the underlying mechanisms.26 Unfortunately, a global multicenter phase 3 clinical 
trial exploring the e$ects of oligomannate was discontinued due to the SARS-
CoV-2 pandemic, delaying the validation of these "ndings.27

Lifestyle factors, including diet, have been estimated to contribute to 
around 40% of dementia risk.22 In investigating the impact of nutrition and gut 
microbiota on AD using cross-sectional data, it is important to establish the 
direction of the associations that we "nd between these and AD pathology. By 
examining changes in nutritional status and gut microbiota composition over 
time in patients at di$erent stages of the disease, the NUDAD study provides 
valuable insights. However, intervention studies are needed to establish causality 
and determine the e$ectiveness of lifestyle modi"cations.

Although evidence for the e$ect of lifestyle interventions on AD pathology 
is limited, there is growing interest in multidomain interventions that combine 
healthy diet, exercise, cognitive training, and social activities. !e FINGER 
study, a large-scale randomized controlled trial in Finland, reported that such 
an intervention reduced the risk of cognitive impairment through such an 
intervention. !is approach is being investigated in 25 countries as part of the 
World-Wide FINGER network, and personalized prevention strategies are also 
being explored in projects such as the Dutch ABOARD project. 

In summary, while the gut microbiome may not have a major role in the 
treatment of AD, it is important to investigate its potential as a contributing factor 
to the disease and as a target for prevention strategies. !e combination of lifestyle 
interventions and pharmacological strategies may hold promise in preventing or 
slowing the progression of AD.
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Re"ections on diversity in this thesis
Despite growing recognition of the importance of inclusion and diversity in 
the scienti"c community, many studies are performed in predominantly white, 
male populations, thereby limiting the external validity of novel mechanisms 
and therapies. !is hinders the progress of our understanding of diseases and 
perpetuates health disparities. In my thesis, I highlighted the opportunities of 
increasing diversity in research, yet I also have to acknowledge the limitations of 
my own projects in this regard.

!e BEAM study is one of the many clinical trials that excluded 
premenopausal women due to their menstrual cycles. !e rationale for this decision 
was based on limited evidence showing that sex hormone cycles would impact the 
microbiome and blood pressure.28,29 Although sex is used as a covariate in many 
microbiome papers, evidence on sex di$erences in microbiome composition itself 
a#er adjusting for confounders is very limited.30–32  In hindsight, the disadvantage 
of the lack of representation might not outweigh the advantages of excluding this 
group. Going forward, it is necessary that we ensure adequate inclusion of women 
and other underrepresented groups in clinical research to ensure that our "ndings 
are applicable to all individuals.

In the projects using data from the HELIUS cohort in Amsterdam, we used 
ethnicity categories to investigate the associations between microbiota and blood 
pressure across di$erent ethnic groups. However, we must be cautious about 
interpreting di$erences between ethnic groups as solely being due to biological 
factors, as ethnicity is a social construct that is shaped by complex social and 
cultural factors. When stratifying or adjusting for ethnicity, it becomes challenging 
to disentangle the speci"c factors at play. In the context of the microbiome, 
di$erences in diet are likely to be of signi"cant importance. Additionally, 
disparities in socioeconomic status may contribute to ethnic variations. To 
enhance mechanistic understanding and mitigate potential racial bias, it is 
advisable to consider variables such as diet or socioeconomic status rather than 
relying solely on ethnicity.

Oversimpli"cation of ethnicity into a few categories might in some cases 
even contribute to health disparities. An example is the correction for race in the 
calculation of estimated glomerular "ltration rate (eGFR), which was proposed 
by an American study that observed higher creatinine levels at a similar renal 
"ltration function in African-Americans.33 Besides the fact that race is a social 
construct, this association was attributed to a higher muscle mass, although the 
literature is inconclusive about ethnic di$erences in body composition.34 !e eGFR 
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formula with a positive adjusting factor for black patients has likely overestimated 
renal function in many cases, leading to a lower referral rate for specialist care or 
transplanations.35 Yet the formula was included in many guidelines wherea#er it 
was applied to a much broader range of ethnicities (i.e. all black and multiracial 
patients).35–37 !is is example underscores why we should explain the procedures 
and justi"cations for both including ethnicity in our analyses and assuming that 
genetics is the most probable cause of the group di$erences we "nd.

As scientists, we have a responsibility to promote diversity, equity, and 
inclusion in all aspects of our research. Major publishers such as Nature now 
recognize the importance of transparency and rigor when reporting on ethnicity 
and sex in medical research, and we must follow their lead in ensuring that our 
research re&ects the diversity of our populations.38,39

Concluding remarks
In conclusion, this thesis has provided valuable insights into the potential role 
of gut microbiota and plasma metabolites in hypertension and AD. !rough our 
work, we have demonstrated the in&uence of gut microbiota, speci"cally through 
SCFA, in modulating blood pressure in hypertension, and have identi"ed nov-
el plasma metabolites like fMet that shed new light on the involvement of mi-
tochondria in this condition. Additionally, the (modest) associations between 
nutritional status, gut microbiota, and AD pathology biomarkers could re&ect a 
potential contribution to neurodegeneration and neuroin&ammation in AD. We 
eagerly await ongoing intervention studies for further evidence on the direction 
of these associations. Ultimately, this thesis underscores the potential of the gut 
microbiota and plasma metabolome as innovative approaches to address these 
two signi"cant public health concerns with complex pathophysiology. It is my 
hope that these "ndings serve as a foundation for future research projects aimed 
at understanding and leveraging the interplay between gut microbiota, plasma 
metabolites, and the pathogenesis of hypertension and AD.



9

275Discussion

References
1. Halfvarson, J. et al. Dynamics of the human gut microbiome in in&ammatory bowel 

disease. Nat Microbiol (2017) doi:10.1038/nmicrobiol.2017.4.
2. Valles-Colomer, M. et al. !e neuroactive potential of the human gut microbiota in 

quality of life and depression. Nat Microbiol (2019) doi:10.1038/s41564-018-0337-x.
3. Sampson, T. R. et al. Gut microbiota regulate motor de"cits and neuroin&ammation 

in a model of Parkinson’s disease. Cell 167, 1469-1480. e12 (2016).
4. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment 

signatures in the human gut microbiota. Nature (2015) doi:10.1038/nature15766.
5. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or Exaggerating 

Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated 
Rodents. Cell 180, 221–232 (2020).

6. Mullish, B. H. et al. !e use of faecal microbiota transplant as treatment for 
recurrent or refractory Clostridium di%cile infection and other potential 
indications: joint British Society of Gastroenterology (BSG) and Healthcare 
Infection Society (HIS) guidelines. Gut 67, 1920–1941 (2018).

7. Kootte, R. S. et al. Improvement of Insulin Sensitivity a#er Lean Donor Feces in 
Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell 
Metab 26, 611-619.e6 (2017).

8. Ianiro, G. et al. Variability of strain engra#ment and predictability of microbiome 
composition a#er fecal microbiota transplantation across di$erent diseases. Nat 
Med 28, 1913–1923 (2022).

9. de Jonge, P. A. et al. Gut virome pro"ling identi"es a widespread bacteriophage 
family associated with metabolic syndrome. Nat Commun 13, 3594 (2022).

10. Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. !e gut microbiome: 
Connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).

11. Shalon, D. et al. Pro"ling the human intestinal environment under physiological 
conditions. Nature 1–11 (2023) doi:10.1038/s41586-023-05989-7.

12. !aiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations 
promotes metabolic homeostasis. Cell 159, 514–529 (2014).

13. McLaren, M. R., Willis, A. D. & Callahan, B. J. Consistent and correctable bias in 
metagenomic sequencing experiments. eLife 8, e46923 (2019).

14. Parada Venegas, D. et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial 
and Immune Regulation and Its Relevance for In&ammatory Bowel Diseases. Front 
Immunol 10, 277 (2019).

15. Newmark, H. L., Lupton, J. R. & Young, C. W. Butyrate as a di$erentiating agent: 
pharmacokinetics, analogues and current status. Cancer Letters 78, 1–5 (1994).

16. Puddu, P., Puddu, G. M., Cravero, E., De Pascalis, S. & Muscari, A. !e Putative 
Role of Mitochondrial Dysfunction in Hypertension. Clin Exp Hypertens 29, 
427–434 (2007).

17. Timmis, J. N., Ayli$e, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene 
transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5, 
123–135 (2004).

18. Zhang, Q. et al. Circulating mitochondrial DAMPs cause in&ammatory responses 
to injury. Nature (2010) doi:10.1038/nature08780.

19. Wenceslau, C. F. et al. Mitochondrial damage-associated molecular patterns and 
vascular function. Eur Heart J 35, 1172–1177 (2014).



Chapter 9276

20. Nemet, I. et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via 
Adrenergic Receptors. Cell 180, 862-877.e22 (2020).

21. Romano, K. A. et al. Gut Microbiota-Generated Phenylacetylglutamine and Heart 
Failure. Circ Heart Failure 16, e009972 (2023).

22. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the 
Lancet Commission. Lancet 396, 413–446 (2020).

23. Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).
24. van Olst, L. et al. Contribution of Gut Microbiota to Immunological Changes in 

Alzheimer’s Disease. Front Immunol 12, 683068 (2021).
25. Wang, X. et al. Sodium oligomannate therapeutically remodels gut microbiota 

and suppresses gut bacterial amino acids-shaped neuroin&ammation to inhibit 
Alzheimer’s disease progression. Cell Res 29, 787–803 (2019).

26. More, Unfortunately, on the Chinese Alzheimer’s Drug Approval. https://www.
science.org/content/blog-post/more-unfortunately-chinese-alzheimer-s-drug-
approval.

27. Green Valley (Shanghai) Pharmaceuticals Co., Ltd. A Phase 3, Multi-center, 
Randomized, Double-blind, Parallel-group, Placebo-controlled Clinical Trial to 
Evaluate the E!cacy and Safety of Sodium Oligomannate (GV-971) in Treatment 
of Mild to Moderate Alzheimer’s Disease (GREEN MEMORY: GREen Valley 971 
EvaluatioN Memory). https://clinicaltrials.gov/ct2/show/NCT04520412 (2022).

28. Markle, J. G. M. et al. Sex Di$erences in the Gut Microbiome Drive Hormone-
Dependent Regulation of Autoimmunity. Science 339, 1084–1088 (2013).

29. Baker, S. E., Limberg, J. K., Ranadive, S. M. & Joyner, M. J. Neurovascular control 
of blood pressure is in&uenced by aging, sex, and sex hormones. Am J Physiol Regul 
Integr Comp Physiol 311, R1271–R1275 (2016).

30. Rothschild, D. et al. Environment dominates over host genetics in shaping human 
gut microbiota. Nature 555, 210–215 (2018).

31. Kurilshikov, A. et al. Large-scale association analyses identify host factors 
in&uencing human gut microbiome composition. Nat Genet 53, 156–165 (2021).

32. Lopera-Maya, E. A. et al. E$ect of host genetics on the gut microbiome in 7,738 
participants of the Dutch Microbiome Project. Nat Genet 54, 143–151 (2022).

33. Levey, A. S. et al. A New Equation to Estimate Glomerular Filtration Rate. Ann Int 
Med 150, 604–612 (2009).

34. Hsu, J., Johansen, K. L., Hsu, C., Kaysen, G. A. & Chertow, G. M. Higher Serum 
Creatinine Concentrations in Black Patients with Chronic Kidney Disease: Beyond 
Nutritional Status and Body Composition. Clin J Am Soc Nephrology 3, 992 (2008).

35. Vyas, D. A., Eisenstein, L. G. & Jones, D. S. Hidden in Plain Sight — Reconsidering 
the Use of Race Correction in Clinical Algorithms. N Engl J Med 383, 874–882 
(2020).

36. Cerdeña, J. P., Plaisime, M. V. & Tsai, J. From race-based to race-conscious 
medicine: how anti-racist uprisings call us to act. Lancet 396, 1125–1128 (2020).

37. Eneanya, N. D., Yang, W. & Reese, P. P. Reconsidering the Consequences of Using 
Race to Estimate Kidney Function. JAMA 322, 113–114 (2019).

38. Why Nature is updating its advice to authors on reporting race or ethnicity. Nature 
616, 219–219 (2023).

39. Accounting for sex and gender makes for better science. Nature 588, 196–196 
(2020).



9

277Discussion



A
Appendices

Nederlandse samenvatting
Authors and a"liations

List of publications
Portfolio

Acknowledgements
About the author



279Nederlandse samenvatting

A

Nederlandse samenvatting
In dit proefschri# heb ik de rol van de darmmicrobiota en de bijbehorende me-
tabolieten onderzocht in twee belangrijke gezondheidsproblemen: hypertensie 
(Deel I) en de ziekte van Alzheimer (Deel II).

Deel I: Hypertensie
In Hoofdstuk 2 hebben we de relatie tussen darmmicrobiota en bloeddruk onder-
zocht in verschillende etnische groepen van de HELIUS-studie. We vonden een 
verband tussen de samenstelling van het darmmicrobioom en bloeddruk, maar 
dit verband was niet in alle groepen even sterk. We vonden daarnaast dat bacte-
riën die bekend staan   om de productie van korteketenvetzuren (short chain fatty 
acids; SCFA) geassocieerd waren met een lagere bloeddruk. Fecale SCFA concen-
traties waren echter hoger bij studiedeelnemers met een hogere bloeddruk. Een 
verklaring voor deze ogenschijnlijk tegenstrijdige bevindingen zou kunnen zijn 
dat de opname van SCFA relatief e%ciënter verloopt bij hogere SCFA-productie. 
De bevindingen suggereren dat de darmmicrobiota en SCFA een rol kunnen spel-
en bij de ontwikkeling van hypertensie, als oorzakelijke factor of als gevolg van de 
aandoening.

In Hoofdstuk 3 hebben we een uitgebreid overzicht gegeven van de huidige lit-
eratuur over de rol van darmmicrobiota bij hypertensie en atherosclerose. Hierin 
hebben we de complexe interacties benadrukt tussen de darmmicrobiota en ver-
schillende fysiologische systemen die betrokken zijn bij de regulatie van de bloed-
druk en atherosclerose, waaronder het immuunsysteem, het renine-angioten-
sine-aldosteronsysteem en het autonome zenuwstelsel. Mechanismen waarmee 
de darmmicrobiota speci"ek de bloeddruk zou kunnen beïnvloeden zijn SCFA, 
lipopolysacchariden, veranderingen in darmpermeabiliteit en de darm-hersen-
as. Over het algemeen laat de bestaande literatuur zien dat de darmmicrobiota 
veelbelovend kunnen zijn voor de preventie en behandeling van hypertensie en 
atherosclerose, maar ook dat de vertaling van de bevindingen van diermodellen 
naar mensen  uitdagend blij#.

In Hoofdstuk 4 hebben we de e$ecten van capsules met butyraat, een SCFA, op 
bloeddruk onderzocht in een gerandomiseerd, placebogecontroleerd onderzoek 
bij patiënten met hypertensie. Behandeling met butyraat gedurende vier weken 
verhoogde de systolische bloeddruk overdag in vergelijking met placebo. Dit zijn 
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waarschijnlijk directe e$ecten van butyraat, aangezien de butyraatbehandeling al-
leen de plasmaconcentraties van butyraat verhoogde en niet de concentraties van 
andere SCFA. Hoewel bestaande interventiestudies met voedingsvezels en meer-
dere SCFA juist bloeddrukverlagende e$ecten lieten zien, toonde dit onderzoek 
aan dat niet alle SCFA gunstige e$ecten hebben op hypertensie bij de mens. Ver-
dere mechanistische studies zijn nodig om de tegengestelde e$ecten van SCFA bij 
mensen te verklaren.

In Hoofdstuk 5 onderzochten we de associaties van plasmametabolieten met 
bloeddruk. Onze machine  learning analyses  toonden aan dat formylmethionine 
de beste voorspellende metaboliet was voor de systolische bloeddruk. Het was 
ook een zeer consistente voorspeller voor bloeddruk in verschillende groepen van 
lee#ijd, geslacht en etniciteit. Vervolgens onderzochten we de in vitro e$ecten van 
deze metaboliet op endotheelcellen. We ontdekten dat formylmethionine endo-
theliale disfunctie verzoorzaakt, waaronder een vermindering van eNOS, versto-
ring van de endotheelbarrière en toename van oxidatieve stress. Onze hypothese 
is dat formylmethionine een mitochondriële damage-associated molecular pat-
tern (DAMP) is die een rol speelt bij de regulering van de bloeddruk.

In Hoofdstuk 6 bekeken we de analyses uit hoofdstuk 5 door de lens van seksev-
erschillen. We ontdekten dat er sekseverschillen zijn in de verbanden tussen plas-
mametabolietenpro"elen en zowel bloeddruk als hartritmevariabiliteit. Sphingo-
myelinen en geconjugeerde galzuren waren meer voorspellend voor bloeddruk 
bij mannen, terwijl metabolieten uit acylcarnitine- en catecholaminepathways 
betere voorspellers waren bij vrouwen. Bovendien konden we hartslagvariabiliteit 
voorspellen uit metabolietpro"elen bij mannen, maar niet bij vrouwen, wat verder 
benadrukt dat er potentieel sekseverschillen zijn in de fysiologie van bloeddruk-
regulatie. Een aantal metabolieten waren geassocieerd met de samenstelling van 
de darmmicrobiota. Dit laat zien dat interventies gericht op de darmmicrobiota 
seksespeci"eke e$ecten kunnen hebben, aangezien plasmametabolieten a6om-
stig van de microbiota anders geassocieerd zijn met bloeddruk bij mannen en 
vrouwen.

Samenvattend hebben we in dit deel van mijn proefschri# de rol onderzocht van 
darmmicrobiota en plasmametabolieten bij hypertensie. Allereerst vonden we 
cross-sectionele verbanden tussen SCFA-producerende bacteriën, fecale SCFA 
concentraties en bloeddruk. Vervolgens bevestigden we dat butyraat, een SCFA, 
e$ect had op de bloeddruk met een klinische interventiestudie bij hypertensieve 
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patiënten. Butyraat had echter bloeddrukverhogende e$ecten, in tegenstelling tot 
eerdere studies met voedingsvezels en SCFA, die bloedddrukverlagende e$ecten 
hebben laten zien. In onze metabolietenanalyses hebben we een nieuwe metabo-
liet gevonden die geassocieerd was met hogere bloeddruk: formylmethionine. Dit 
zou een bacterieel product kunnen zijn, maar is meer waarschijnlijk een mito-
chondriaal product dat een rol zou kunnen spelen bij de regulering van de bloed-
druk. Daarnaast hebben we laten zien dat het verband tussen plasma metabo-
lieten en bloeddruk seksespeci"ek is. Deze analyses resulteerden in verschillende 
aanknopingspunten voor verder mechanistisch onderzoek naar sekseverschillen 
in hypertensie.

Deel II: Zieke van Alzheimer
Hoofdstuk 7 analyseerden we de associatie tussen voedingsstatus en structurele 
veranderingen in de hersenen bij patiënten met subjectieve cognitieve achter-
uitgang (SCD), milde cognitieve stoornissen (MCI) en de ziekte van Alzheimer 
(AD) dementie in de NUDAD-cohort. In deze cross-sectionele analyse vonden 
we dat lagere indicatoren voor voedingsstatus geassocieerd waren met meer atro-
"e op MRI, in het bijzonder globale corticale atro"e en mediale temporale atro"e. 
Dit  onderzoek laat zien dat slechte voeding zou kunnen bijdragen aan de ontwik-
keling en progressie van de ziekte van Alzheimer middels e$ecten op de hersen-
structuur, hoewel dit verder bevestigd moet worden door interventiestudies. De 
bevindingen benadrukken opnieuw het belang van het behouden van een goede 
voedingsstatus bij patiënten met de ziekte van Alzheimer.

In Hoofdstuk 8 onderzochten we de relatie tussen de samenstelling van de darm-
microbiota en biomarkers van AD-pathologie in de NUDAD-cohort. We von-
den bescheiden associaties tussen de samenstelling van de darmmicrobiota en 
AD-biomarkers in het hersenvocht, zoals amyloïd-bèta en tau-eiwitten. Speci"ek 
hadden deelnemers met een groter aantal SCFA-producerende bacteriën mind-
er vaak abnormale AD-biomarkers in het hersenvocht. Dit verband kan worden 
verklaard door de immunomodulerende eigenschappen van SCFA zoals eerdere 
in vitro en in vivo studies hebben aangetoond. Dit was echter een cross-sectio-
nele analyse en daarom kunnen we geen oorzakelijke conclusies trekken. Voor 
toekomstig onderzoek zou het interessant zijn om te kijken naar de relatie tussen 
plasma- en fecale SCFA en ontstekingsmarkers zoals glial $brillary acid protein 
(GFAP) bij patiënten met AD.  
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Samenvattend hebben we in de hoofdstukken in het tweede deel van dit proefschri# 
gekeken naar de mogelijke impact van voedingsstatus en de samenstelling van de 
darmmicrobiota op de pathologie van de ziekte van Alzheimer. De verbanden hi-
ertussen bleken subtiel te zijn, en daarom lijkt het waarschijnlijker dat het darm-
microbioom geen oorzakelijk, maar eerder een ziektemodulerend e$ect hee#.
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